{"title":"与等辫张量范畴的 $$\\alpha $$ -Induction 相关的弗罗贝尼斯代数","authors":"Mizuki Oikawa","doi":"10.1007/s00023-023-01396-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a group. We give a categorical definition of the <i>G</i>-equivariant <span>\\(\\alpha \\)</span>-induction associated with a given <i>G</i>-equivariant Frobenius algebra in a <i>G</i>-braided multitensor category, which generalizes the <span>\\(\\alpha \\)</span>-induction for <i>G</i>-twisted representations of conformal nets. For a given <i>G</i>-equivariant Frobenius algebra in a spherical <i>G</i>-braided fusion category, we construct a <i>G</i>-equivariant Frobenius algebra, which we call a <i>G</i>-equivariant <span>\\(\\alpha \\)</span>-induction Frobenius algebra, in a suitably defined category called neutral double. This construction generalizes Rehren’s construction of <span>\\(\\alpha \\)</span>-induction Q-systems. Finally, we define the notion of the <i>G</i>-equivariant full centre of a <i>G</i>-equivariant Frobenius algebra in a spherical <i>G</i>-braided fusion category and show that it indeed coincides with the corresponding <i>G</i>-equivariant <span>\\(\\alpha \\)</span>-induction Frobenius algebra, which generalizes a theorem of Bischoff, Kawahigashi and Longo.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 10","pages":"4423 - 4495"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00023-023-01396-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Frobenius Algebras Associated with the \\\\(\\\\alpha \\\\)-Induction for Equivariantly Braided Tensor Categories\",\"authors\":\"Mizuki Oikawa\",\"doi\":\"10.1007/s00023-023-01396-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>G</i> be a group. We give a categorical definition of the <i>G</i>-equivariant <span>\\\\(\\\\alpha \\\\)</span>-induction associated with a given <i>G</i>-equivariant Frobenius algebra in a <i>G</i>-braided multitensor category, which generalizes the <span>\\\\(\\\\alpha \\\\)</span>-induction for <i>G</i>-twisted representations of conformal nets. For a given <i>G</i>-equivariant Frobenius algebra in a spherical <i>G</i>-braided fusion category, we construct a <i>G</i>-equivariant Frobenius algebra, which we call a <i>G</i>-equivariant <span>\\\\(\\\\alpha \\\\)</span>-induction Frobenius algebra, in a suitably defined category called neutral double. This construction generalizes Rehren’s construction of <span>\\\\(\\\\alpha \\\\)</span>-induction Q-systems. Finally, we define the notion of the <i>G</i>-equivariant full centre of a <i>G</i>-equivariant Frobenius algebra in a spherical <i>G</i>-braided fusion category and show that it indeed coincides with the corresponding <i>G</i>-equivariant <span>\\\\(\\\\alpha \\\\)</span>-induction Frobenius algebra, which generalizes a theorem of Bischoff, Kawahigashi and Longo.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 10\",\"pages\":\"4423 - 4495\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00023-023-01396-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-023-01396-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-023-01396-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
让 G 是一个群。我们给出了一个分类定义,即在 G 带多张量范畴中与给定的 G 变弗罗贝纽斯代数相关的 G 变 \(α \)-归纳,它概括了共形网的 G 扭转表示的 \(α \)-归纳。对于球面 G 带融合范畴中的给定 G 变弗罗贝纽斯代数,我们在一个称为中性双的适当定义的范畴中构造了一个 G 变弗罗贝纽斯代数,我们称之为 G 变 \(\alpha \)-induction弗罗贝纽斯代数。这种构造概括了 Rehren 对 \(\alpha \)-归纳 Q 系统的构造。最后,我们定义了一个球形 G 带融合范畴中的 G 变弗罗贝纽斯代数的 G 变全中心的概念,并证明它确实与相应的 G 变 \(\alpha \)-归纳弗罗贝纽斯代数重合,这概括了比绍夫(Bischoff)、川桥(Kawahigashi)和朗格(Longo)的一个定理。
Frobenius Algebras Associated with the \(\alpha \)-Induction for Equivariantly Braided Tensor Categories
Let G be a group. We give a categorical definition of the G-equivariant \(\alpha \)-induction associated with a given G-equivariant Frobenius algebra in a G-braided multitensor category, which generalizes the \(\alpha \)-induction for G-twisted representations of conformal nets. For a given G-equivariant Frobenius algebra in a spherical G-braided fusion category, we construct a G-equivariant Frobenius algebra, which we call a G-equivariant \(\alpha \)-induction Frobenius algebra, in a suitably defined category called neutral double. This construction generalizes Rehren’s construction of \(\alpha \)-induction Q-systems. Finally, we define the notion of the G-equivariant full centre of a G-equivariant Frobenius algebra in a spherical G-braided fusion category and show that it indeed coincides with the corresponding G-equivariant \(\alpha \)-induction Frobenius algebra, which generalizes a theorem of Bischoff, Kawahigashi and Longo.
期刊介绍:
The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society.
The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.