{"title":"非线性波方程解的持久性和渐近分析","authors":"Igor Leite Freire","doi":"10.1007/s00028-023-00937-4","DOIUrl":null,"url":null,"abstract":"<p>We consider persistence properties of solutions for a generalised wave equation including vibration in elastic rods and shallow water models, such as the BBM, the Dai’s, the Camassa–Holm, and the Dullin–Gottwald–Holm equations, as well as some recent shallow water equations with Coriolis effect. We establish unique continuation results and exhibit asymptotic profiles for the solutions of the general class considered. From these results we prove the non-existence of non-trivial spatially compactly supported solutions for the equation. As an aftermath, we study the equations earlier mentioned in light of our results for the general class.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Persistence and asymptotic analysis of solutions of nonlinear wave equations\",\"authors\":\"Igor Leite Freire\",\"doi\":\"10.1007/s00028-023-00937-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider persistence properties of solutions for a generalised wave equation including vibration in elastic rods and shallow water models, such as the BBM, the Dai’s, the Camassa–Holm, and the Dullin–Gottwald–Holm equations, as well as some recent shallow water equations with Coriolis effect. We establish unique continuation results and exhibit asymptotic profiles for the solutions of the general class considered. From these results we prove the non-existence of non-trivial spatially compactly supported solutions for the equation. As an aftermath, we study the equations earlier mentioned in light of our results for the general class.</p>\",\"PeriodicalId\":51083,\"journal\":{\"name\":\"Journal of Evolution Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Evolution Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00028-023-00937-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-023-00937-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Persistence and asymptotic analysis of solutions of nonlinear wave equations
We consider persistence properties of solutions for a generalised wave equation including vibration in elastic rods and shallow water models, such as the BBM, the Dai’s, the Camassa–Holm, and the Dullin–Gottwald–Holm equations, as well as some recent shallow water equations with Coriolis effect. We establish unique continuation results and exhibit asymptotic profiles for the solutions of the general class considered. From these results we prove the non-existence of non-trivial spatially compactly supported solutions for the equation. As an aftermath, we study the equations earlier mentioned in light of our results for the general class.
期刊介绍:
The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications.
Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field.
Particular topics covered by the journal are:
Linear and Nonlinear Semigroups
Parabolic and Hyperbolic Partial Differential Equations
Reaction Diffusion Equations
Deterministic and Stochastic Control Systems
Transport and Population Equations
Volterra Equations
Delay Equations
Stochastic Processes and Dirichlet Forms
Maximal Regularity and Functional Calculi
Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations
Evolution Equations in Mathematical Physics
Elliptic Operators