非抛物线 RCD(0, N) 空间上格林函数的锐梯度估计、刚性和近似刚性

IF 1.3 3区 数学 Q1 MATHEMATICS
Shouhei Honda, Yuanlin Peng
{"title":"非抛物线 RCD(0, N) 空间上格林函数的锐梯度估计、刚性和近似刚性","authors":"Shouhei Honda, Yuanlin Peng","doi":"10.1017/prm.2024.131","DOIUrl":null,"url":null,"abstract":"<p>Inspired by a result in T. H. Colding. (16). <span>Acta. Math.</span> <span>209</span>(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline2.png\"/></span></span> on a non-parabolic <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(0,\\,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline3.png\"/></span></span> space <span><span><span data-mathjax-type=\"texmath\"><span>$(X,\\, \\mathsf {d},\\, \\mathfrak {m})$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline4.png\"/></span></span> for some finite <span><span><span data-mathjax-type=\"texmath\"><span>$N&gt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline5.png\"/></span></span>. Defining <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathsf {b}_x=G(x,\\, \\cdot )^{\\frac {1}{2-N}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline6.png\"/></span></span> for a point <span><span><span data-mathjax-type=\"texmath\"><span>$x \\in X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline7.png\"/></span></span>, which plays a role of a smoothed distance function from <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline8.png\"/></span></span>, we prove that the gradient <span><span><span data-mathjax-type=\"texmath\"><span>$|\\nabla \\mathsf {b}_x|$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline9.png\"/></span></span> has the canonical pointwise representative with the sharp upper bound in terms of the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline10.png\"/></span></span>-volume density <span><span><span data-mathjax-type=\"texmath\"><span>$\\nu _x=\\lim _{r\\to 0^+}\\frac {\\mathfrak {m} (B_r(x))}{r^N}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline11.png\"/></span></span> of <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {m}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline12.png\"/></span></span> at <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline13.png\"/></span></span>;<span><span data-mathjax-type=\"texmath\"><span>\\[ |\\nabla \\mathsf{b}_x|(y) \\le \\left(N(N-2)\\nu_x\\right)^{\\frac{1}{N-2}}, \\quad \\text{for any }y \\in X \\setminus \\{x\\}. \\]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_eqnU1.png\"/></span>Moreover the rigidity is obtained, namely, the upper bound is attained at a point <span><span><span data-mathjax-type=\"texmath\"><span>$y \\in X \\setminus \\{x\\}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline14.png\"/></span></span> if and only if the space is isomorphic to the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline15.png\"/></span></span>-metric measure cone over an <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(N-2,\\, N-1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline16.png\"/></span></span> space. In the case when <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline17.png\"/></span></span> is an <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline18.png\"/></span></span>-regular point, the rigidity states an isomorphism to the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline19.png\"/></span></span>-dimensional Euclidean space <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathbb {R}^N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline20.png\"/></span></span>, thus, this extends the result of Colding to <span><span><span data-mathjax-type=\"texmath\"><span>$\\operatorname {RCD}(0,\\,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline21.png\"/></span></span> spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces\",\"authors\":\"Shouhei Honda, Yuanlin Peng\",\"doi\":\"10.1017/prm.2024.131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inspired by a result in T. H. Colding. (16). <span>Acta. Math.</span> <span>209</span>(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline2.png\\\"/></span></span> on a non-parabolic <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {RCD}(0,\\\\,N)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline3.png\\\"/></span></span> space <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$(X,\\\\, \\\\mathsf {d},\\\\, \\\\mathfrak {m})$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline4.png\\\"/></span></span> for some finite <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$N&gt;2$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline5.png\\\"/></span></span>. Defining <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {b}_x=G(x,\\\\, \\\\cdot )^{\\\\frac {1}{2-N}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline6.png\\\"/></span></span> for a point <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$x \\\\in X$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline7.png\\\"/></span></span>, which plays a role of a smoothed distance function from <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$x$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline8.png\\\"/></span></span>, we prove that the gradient <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$|\\\\nabla \\\\mathsf {b}_x|$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline9.png\\\"/></span></span> has the canonical pointwise representative with the sharp upper bound in terms of the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline10.png\\\"/></span></span>-volume density <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\nu _x=\\\\lim _{r\\\\to 0^+}\\\\frac {\\\\mathfrak {m} (B_r(x))}{r^N}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline11.png\\\"/></span></span> of <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathfrak {m}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline12.png\\\"/></span></span> at <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$x$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline13.png\\\"/></span></span>;<span><span data-mathjax-type=\\\"texmath\\\"><span>\\\\[ |\\\\nabla \\\\mathsf{b}_x|(y) \\\\le \\\\left(N(N-2)\\\\nu_x\\\\right)^{\\\\frac{1}{N-2}}, \\\\quad \\\\text{for any }y \\\\in X \\\\setminus \\\\{x\\\\}. \\\\]</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_eqnU1.png\\\"/></span>Moreover the rigidity is obtained, namely, the upper bound is attained at a point <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$y \\\\in X \\\\setminus \\\\{x\\\\}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline14.png\\\"/></span></span> if and only if the space is isomorphic to the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline15.png\\\"/></span></span>-metric measure cone over an <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {RCD}(N-2,\\\\, N-1)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline16.png\\\"/></span></span> space. In the case when <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$x$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline17.png\\\"/></span></span> is an <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline18.png\\\"/></span></span>-regular point, the rigidity states an isomorphism to the <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$N$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline19.png\\\"/></span></span>-dimensional Euclidean space <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathbb {R}^N$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline20.png\\\"/></span></span>, thus, this extends the result of Colding to <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {RCD}(0,\\\\,N)$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline21.png\\\"/></span></span> spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.131\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.131","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

灵感来自 T. H. Colding 的一个结果。(16).Acta.Math.209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$ on a non-parabolic $operatorname {RCD}(0,\,N)$ space $(X,\, \mathsf {d},\, \mathfrak {m})$ for some finite $N>2$.对于 X$ 中的点$x,定义$mathsf {b}_x=G(x,\, \cdot )^{\frac {1}{2-N}}$ ,它起着从$x$出发的平滑距离函数的作用、我们证明梯度$|\nabla \mathsf {b}_x|$ 在$x$处的$\mathfrak {m}$ 的$N$-体积密度$\nu _x=\lim _{r\to 0^+}\frac {mathfrak {m} (B_r(x))}{r^N}$ 具有具有尖锐上界的典型点代表;|\nabla \mathsf{b}_x|(y) \le \left(N(N-2)\nu_x\right)^{frac{1}{N-2}}, \quad \text{for any }y \in X \setminus \{x\}。\]此外,我们还得到了刚性,即只有当且仅当空间与$operatorname {RCD}(N-2,\, N-1)$空间上的$N$度量锥同构时,在$y \in X setminus \{x\}$上的点才会达到上界。在 $x$ 是一个 $N$ 不规则点的情况下,刚度与 $N$ 维欧几里得空间 $mathbb {R}^N$ 同构,因此,这将科尔丁的结果扩展到了 $\operatorname {RCD}(0,\,N)$ 空间。需要强调的是,几乎刚性也得到了证明,这即使在光滑框架中也是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces

Inspired by a result in T. H. Colding. (16). Acta. Math. 209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$ on a non-parabolic $\operatorname {RCD}(0,\,N)$ space $(X,\, \mathsf {d},\, \mathfrak {m})$ for some finite $N>2$. Defining $\mathsf {b}_x=G(x,\, \cdot )^{\frac {1}{2-N}}$ for a point $x \in X$, which plays a role of a smoothed distance function from $x$, we prove that the gradient $|\nabla \mathsf {b}_x|$ has the canonical pointwise representative with the sharp upper bound in terms of the $N$-volume density $\nu _x=\lim _{r\to 0^+}\frac {\mathfrak {m} (B_r(x))}{r^N}$ of $\mathfrak {m}$ at $x$;\[ |\nabla \mathsf{b}_x|(y) \le \left(N(N-2)\nu_x\right)^{\frac{1}{N-2}}, \quad \text{for any }y \in X \setminus \{x\}. \]Moreover the rigidity is obtained, namely, the upper bound is attained at a point $y \in X \setminus \{x\}$ if and only if the space is isomorphic to the $N$-metric measure cone over an $\operatorname {RCD}(N-2,\, N-1)$ space. In the case when $x$ is an $N$-regular point, the rigidity states an isomorphism to the $N$-dimensional Euclidean space $\mathbb {R}^N$, thus, this extends the result of Colding to $\operatorname {RCD}(0,\,N)$ spaces. It is emphasized that the almost rigidities are also proved, which are new even in the smooth framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信