海森堡-维拉索罗代数上简单光滑模块的分类

IF 1.3 3区 数学 Q1 MATHEMATICS
Haijun Tan, Yufeng Yao, Kaiming Zhao
{"title":"海森堡-维拉索罗代数上简单光滑模块的分类","authors":"Haijun Tan, Yufeng Yao, Kaiming Zhao","doi":"10.1017/prm.2024.132","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra <span><span><span data-mathjax-type=\"texmath\"><span>${\\mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline1.png\"/></span></span>, and simple smooth modules over the twisted Heisenberg–Virasoro algebra <span><span><span data-mathjax-type=\"texmath\"><span>$\\bar {\\mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline2.png\"/></span></span> with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over <span><span><span data-mathjax-type=\"texmath\"><span>${\\mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline3.png\"/></span></span>. A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth <span><span><span data-mathjax-type=\"texmath\"><span>${\\mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline4.png\"/></span></span>-modules and <span><span><span data-mathjax-type=\"texmath\"><span>$\\bar {\\mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline5.png\"/></span></span>-modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathfrak {D}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline6.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$\\bar {\\mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline7.png\"/></span></span> which are always tensor products of simple Virasoro modules and simple Heisenberg modules.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"19 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of simple smooth modules over the Heisenberg–Virasoro algebra\",\"authors\":\"Haijun Tan, Yufeng Yao, Kaiming Zhao\",\"doi\":\"10.1017/prm.2024.132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathfrak {D}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline1.png\\\"/></span></span>, and simple smooth modules over the twisted Heisenberg–Virasoro algebra <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\bar {\\\\mathfrak {D}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline2.png\\\"/></span></span> with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathfrak {D}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline3.png\\\"/></span></span>. A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth <span><span><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathfrak {D}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline4.png\\\"/></span></span>-modules and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\bar {\\\\mathfrak {D}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline5.png\\\"/></span></span>-modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathfrak {D}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline6.png\\\"/></span></span> and <span><span><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\bar {\\\\mathfrak {D}}$</span></span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline7.png\\\"/></span></span> which are always tensor products of simple Virasoro modules and simple Heisenberg modules.</p>\",\"PeriodicalId\":54560,\"journal\":{\"name\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society of Edinburgh Section A-Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/prm.2024.132\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.132","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对镜像海森堡-维拉索罗代数 ${mathfrak {D}}$ 上的简单光滑模组和扭曲海森堡-维拉索罗代数 $bar {\mathfrak {D}}$ 上的非零级简单光滑模组进行了分类。为此,我们把菅原算子推广到海森堡代数上的光滑模块,并开发了新技术。作为应用,我们描述了 ${mathfrak {D}}$ 上的简单惠特克模块和简单最高权重模块。我们的结果在顶点代数上的一个解释是海森堡-维拉索罗顶点代数上的简单弱扭曲和非扭曲模块的分类。我们还举例说明了简单光滑的 ${mathfrak {D}$ 模块和由有限维可解李代数上的简单模块诱导的 $\bar {mathfrak {D}$ 模块,它们不是 Virasoro 模块和海森堡模块的张量乘积模块。这与 $\mathfrak {D}$ 和 $\bar {mathfrak {D}}$ 上的简单最高权重模块的情况截然不同,后者总是简单维拉索罗模块和简单海森堡模块的张量乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of simple smooth modules over the Heisenberg–Virasoro algebra

In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra ${\mathfrak {D}}$, and simple smooth modules over the twisted Heisenberg–Virasoro algebra $\bar {\mathfrak {D}}$ with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over ${\mathfrak {D}}$. A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth ${\mathfrak {D}}$-modules and $\bar {\mathfrak {D}}$-modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over $\mathfrak {D}$ and $\bar {\mathfrak {D}}$ which are always tensor products of simple Virasoro modules and simple Heisenberg modules.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信