一阶均值场博弈系统的拉格朗日-加勒金方案

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Elisabetta Carlini, Francisco J. Silva, Ahmad Zorkot
{"title":"一阶均值场博弈系统的拉格朗日-加勒金方案","authors":"Elisabetta Carlini, Francisco J. Silva, Ahmad Zorkot","doi":"10.1137/23m1561762","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 167-198, February 2024. <br/> Abstract. In this work, we consider a first order mean field game system with nonlocal couplings. A Lagrange–Galerkin scheme for the continuity equation, coupled with a semi-Lagrangian scheme for the Hamilton–Jacobi–Bellman equation, is proposed to discretize the mean field games system. The convergence of solutions to the scheme towards a solution to the mean field game system is established in arbitrary space dimensions. The scheme is implemented to approximate two mean field games systems in dimensions one and two.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"7 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Lagrange–Galerkin Scheme for First Order Mean Field Game Systems\",\"authors\":\"Elisabetta Carlini, Francisco J. Silva, Ahmad Zorkot\",\"doi\":\"10.1137/23m1561762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 167-198, February 2024. <br/> Abstract. In this work, we consider a first order mean field game system with nonlocal couplings. A Lagrange–Galerkin scheme for the continuity equation, coupled with a semi-Lagrangian scheme for the Hamilton–Jacobi–Bellman equation, is proposed to discretize the mean field games system. The convergence of solutions to the scheme towards a solution to the mean field game system is established in arbitrary space dimensions. The scheme is implemented to approximate two mean field games systems in dimensions one and two.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1561762\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1561762","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 1 期第 167-198 页,2024 年 2 月。 摘要在这项工作中,我们考虑了一个具有非局部耦合的一阶均值场博弈系统。提出了连续性方程的拉格朗日-加勒金方案和汉密尔顿-雅各比-贝尔曼方程的半拉格朗日方案来离散均值场博弈系统。在任意空间维度上,确定了该方案的解向均值场博弈系统解的收敛性。该方案用于近似一维和二维的两个均值场博弈系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lagrange–Galerkin Scheme for First Order Mean Field Game Systems
SIAM Journal on Numerical Analysis, Volume 62, Issue 1, Page 167-198, February 2024.
Abstract. In this work, we consider a first order mean field game system with nonlocal couplings. A Lagrange–Galerkin scheme for the continuity equation, coupled with a semi-Lagrangian scheme for the Hamilton–Jacobi–Bellman equation, is proposed to discretize the mean field games system. The convergence of solutions to the scheme towards a solution to the mean field game system is established in arbitrary space dimensions. The scheme is implemented to approximate two mean field games systems in dimensions one and two.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信