{"title":"具有非光滑系数的微分算子的最优半经典谱渐近法","authors":"Søren Mikkelsen","doi":"10.1007/s11868-023-00572-0","DOIUrl":null,"url":null,"abstract":"<p>We consider differential operators defined as Friedrichs extensions of quadratic forms with non-smooth coefficients. We prove a two-term optimal asymptotic for the Riesz means of these operators and thereby also reprove an optimal Weyl law under certain regularity conditions. The methods used are then extended to consider more general admissible operators perturbed by a rough differential operator and to obtain optimal spectral asymptotics again under certain regularity conditions. For the Weyl law, we assume that the coefficients are differentiable with Hölder continuous derivatives, while for the Riesz means we assume that the coefficients are twice differentiable with Hölder continuous derivatives.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal semiclassical spectral asymptotics for differential operators with non-smooth coefficients\",\"authors\":\"Søren Mikkelsen\",\"doi\":\"10.1007/s11868-023-00572-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider differential operators defined as Friedrichs extensions of quadratic forms with non-smooth coefficients. We prove a two-term optimal asymptotic for the Riesz means of these operators and thereby also reprove an optimal Weyl law under certain regularity conditions. The methods used are then extended to consider more general admissible operators perturbed by a rough differential operator and to obtain optimal spectral asymptotics again under certain regularity conditions. For the Weyl law, we assume that the coefficients are differentiable with Hölder continuous derivatives, while for the Riesz means we assume that the coefficients are twice differentiable with Hölder continuous derivatives.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-023-00572-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-023-00572-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Optimal semiclassical spectral asymptotics for differential operators with non-smooth coefficients
We consider differential operators defined as Friedrichs extensions of quadratic forms with non-smooth coefficients. We prove a two-term optimal asymptotic for the Riesz means of these operators and thereby also reprove an optimal Weyl law under certain regularity conditions. The methods used are then extended to consider more general admissible operators perturbed by a rough differential operator and to obtain optimal spectral asymptotics again under certain regularity conditions. For the Weyl law, we assume that the coefficients are differentiable with Hölder continuous derivatives, while for the Riesz means we assume that the coefficients are twice differentiable with Hölder continuous derivatives.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.