加权 Choquet 积分最大函数的有界性

IF 1.1 2区 数学 Q1 MATHEMATICS
Keng Hao Ooi
{"title":"加权 Choquet 积分最大函数的有界性","authors":"Keng Hao Ooi","doi":"10.1007/s43037-023-00317-7","DOIUrl":null,"url":null,"abstract":"<p>We study the boundedness of Hardy–Littlewood maximal function on the spaces defined in terms of Choquet integrals associated with weighted Bessel and Riesz capacities. As a consequence, we obtain a class of weighted Sobolev inequalities.</p>","PeriodicalId":55400,"journal":{"name":"Banach Journal of Mathematical Analysis","volume":"11 5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundedness of maximal function for weighted Choquet integrals\",\"authors\":\"Keng Hao Ooi\",\"doi\":\"10.1007/s43037-023-00317-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the boundedness of Hardy–Littlewood maximal function on the spaces defined in terms of Choquet integrals associated with weighted Bessel and Riesz capacities. As a consequence, we obtain a class of weighted Sobolev inequalities.</p>\",\"PeriodicalId\":55400,\"journal\":{\"name\":\"Banach Journal of Mathematical Analysis\",\"volume\":\"11 5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Banach Journal of Mathematical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s43037-023-00317-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Banach Journal of Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s43037-023-00317-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了哈代-利特尔伍德最大函数在与加权贝塞尔和里兹能力相关的乔奎特积分定义的空间上的有界性。因此,我们得到了一类加权索波列夫不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Boundedness of maximal function for weighted Choquet integrals

We study the boundedness of Hardy–Littlewood maximal function on the spaces defined in terms of Choquet integrals associated with weighted Bessel and Riesz capacities. As a consequence, we obtain a class of weighted Sobolev inequalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
8.30%
发文量
67
审稿时长
>12 weeks
期刊介绍: The Banach Journal of Mathematical Analysis (Banach J. Math. Anal.) is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Banach J. Math. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and operator theory and all modern related topics. Banach J. Math. Anal. normally publishes survey articles and original research papers numbering 15 pages or more in the journal’s style. Shorter papers may be submitted to the Annals of Functional Analysis or Advances in Operator Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信