分数多图延迟微分方程的谱配位法*

Pub Date : 2024-01-15 DOI:10.1007/s10986-023-09614-y
Xiulian Shi, Keyan Wang, Hui Sun
{"title":"分数多图延迟微分方程的谱配位法*","authors":"Xiulian Shi, Keyan Wang, Hui Sun","doi":"10.1007/s10986-023-09614-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose and analyze a spectral collocation method for the numerical solutions of fractional multipantograph delay differential equations. The fractional derivatives are described in the Caputo sense. We present that some suitable variable transformations can convert the equations to a Volterra integral equation defined on the standard interval [<i>−</i>1<i>,</i> 1]. Then the Jacobi–Gauss points are used as collocation nodes, and the Jacobi–Gauss quadrature formula is used to approximate the integral equation. Later, the convergence analysis of the proposed method is investigated in the infinity norm and weighted <i>L</i><sup>2</sup> norm. To perform the numerical simulations, some test examples are investigated, and numerical results are presented. Further, we provide the comparative study of the proposed method with some existing numerical methods.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral collocation methods for fractional multipantograph delay differential equations*\",\"authors\":\"Xiulian Shi, Keyan Wang, Hui Sun\",\"doi\":\"10.1007/s10986-023-09614-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose and analyze a spectral collocation method for the numerical solutions of fractional multipantograph delay differential equations. The fractional derivatives are described in the Caputo sense. We present that some suitable variable transformations can convert the equations to a Volterra integral equation defined on the standard interval [<i>−</i>1<i>,</i> 1]. Then the Jacobi–Gauss points are used as collocation nodes, and the Jacobi–Gauss quadrature formula is used to approximate the integral equation. Later, the convergence analysis of the proposed method is investigated in the infinity norm and weighted <i>L</i><sup>2</sup> norm. To perform the numerical simulations, some test examples are investigated, and numerical results are presented. Further, we provide the comparative study of the proposed method with some existing numerical methods.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-023-09614-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-023-09614-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出并分析了一种用于分数多延时微分方程数值求解的谱配位法。分数导数是在卡普托意义上描述的。我们提出,一些合适的变量变换可以将方程转换为定义在标准区间 [-1, 1] 上的 Volterra 积分方程。然后以 Jacobi-Gauss 点作为配位节点,利用 Jacobi-Gauss 正交公式对积分方程进行逼近。随后,研究了所提方法在无穷规范和加权 L2 规范下的收敛性分析。为了进行数值模拟,我们研究了一些测试实例,并给出了数值结果。此外,我们还提供了所提方法与一些现有数值方法的比较研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Spectral collocation methods for fractional multipantograph delay differential equations*

In this paper, we propose and analyze a spectral collocation method for the numerical solutions of fractional multipantograph delay differential equations. The fractional derivatives are described in the Caputo sense. We present that some suitable variable transformations can convert the equations to a Volterra integral equation defined on the standard interval [1, 1]. Then the Jacobi–Gauss points are used as collocation nodes, and the Jacobi–Gauss quadrature formula is used to approximate the integral equation. Later, the convergence analysis of the proposed method is investigated in the infinity norm and weighted L2 norm. To perform the numerical simulations, some test examples are investigated, and numerical results are presented. Further, we provide the comparative study of the proposed method with some existing numerical methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信