Krista Wernér, Turkka Anttila, Sina Hulkkonen, Timo Viljakka, Ville Haapamäki, Jorma Ryhänen
{"title":"利用深度学习模型从 X 光片检测月骨血管性坏死","authors":"Krista Wernér, Turkka Anttila, Sina Hulkkonen, Timo Viljakka, Ville Haapamäki, Jorma Ryhänen","doi":"10.1007/s10278-023-00964-0","DOIUrl":null,"url":null,"abstract":"<p>Deep-learning (DL) algorithms have the potential to change medical image classification and diagnostics in the coming decade. Delayed diagnosis and treatment of avascular necrosis (AVN) of the lunate may have a detrimental effect on patient hand function. The aim of this study was to use a segmentation-based DL model to diagnose AVN of the lunate from wrist postero-anterior radiographs. A total of 319 radiographs of the diseased lunate and 1228 control radiographs were gathered from Helsinki University Central Hospital database. Of these, 10% were separated to form a test set for model validation. MRI confirmed the absence of disease. In cases of AVN of the lunate, a hand surgeon at Helsinki University Hospital validated the accurate diagnosis using either MRI or radiography. For detection of AVN, the model had a sensitivity of 93.33% (95% confidence interval (CI) 77.93–99.18%), specificity of 93.28% (95% CI 87.18–97.05%), and accuracy of 93.28% (95% CI 87.99–96.73%). The area under the receiver operating characteristic curve was 0.94 (95% CI 0.88–0.99). Compared to three clinical experts, the DL model had better AUC than one clinical expert and only one expert had higher accuracy than the DL model. The results were otherwise similar between the model and clinical experts. Our DL model performed well and may be a future beneficial tool for screening of AVN of the lunate.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Avascular Necrosis of the Lunate from Radiographs Using a Deep-Learning Model\",\"authors\":\"Krista Wernér, Turkka Anttila, Sina Hulkkonen, Timo Viljakka, Ville Haapamäki, Jorma Ryhänen\",\"doi\":\"10.1007/s10278-023-00964-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Deep-learning (DL) algorithms have the potential to change medical image classification and diagnostics in the coming decade. Delayed diagnosis and treatment of avascular necrosis (AVN) of the lunate may have a detrimental effect on patient hand function. The aim of this study was to use a segmentation-based DL model to diagnose AVN of the lunate from wrist postero-anterior radiographs. A total of 319 radiographs of the diseased lunate and 1228 control radiographs were gathered from Helsinki University Central Hospital database. Of these, 10% were separated to form a test set for model validation. MRI confirmed the absence of disease. In cases of AVN of the lunate, a hand surgeon at Helsinki University Hospital validated the accurate diagnosis using either MRI or radiography. For detection of AVN, the model had a sensitivity of 93.33% (95% confidence interval (CI) 77.93–99.18%), specificity of 93.28% (95% CI 87.18–97.05%), and accuracy of 93.28% (95% CI 87.99–96.73%). The area under the receiver operating characteristic curve was 0.94 (95% CI 0.88–0.99). Compared to three clinical experts, the DL model had better AUC than one clinical expert and only one expert had higher accuracy than the DL model. The results were otherwise similar between the model and clinical experts. Our DL model performed well and may be a future beneficial tool for screening of AVN of the lunate.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00964-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00964-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Detecting Avascular Necrosis of the Lunate from Radiographs Using a Deep-Learning Model
Deep-learning (DL) algorithms have the potential to change medical image classification and diagnostics in the coming decade. Delayed diagnosis and treatment of avascular necrosis (AVN) of the lunate may have a detrimental effect on patient hand function. The aim of this study was to use a segmentation-based DL model to diagnose AVN of the lunate from wrist postero-anterior radiographs. A total of 319 radiographs of the diseased lunate and 1228 control radiographs were gathered from Helsinki University Central Hospital database. Of these, 10% were separated to form a test set for model validation. MRI confirmed the absence of disease. In cases of AVN of the lunate, a hand surgeon at Helsinki University Hospital validated the accurate diagnosis using either MRI or radiography. For detection of AVN, the model had a sensitivity of 93.33% (95% confidence interval (CI) 77.93–99.18%), specificity of 93.28% (95% CI 87.18–97.05%), and accuracy of 93.28% (95% CI 87.99–96.73%). The area under the receiver operating characteristic curve was 0.94 (95% CI 0.88–0.99). Compared to three clinical experts, the DL model had better AUC than one clinical expert and only one expert had higher accuracy than the DL model. The results were otherwise similar between the model and clinical experts. Our DL model performed well and may be a future beneficial tool for screening of AVN of the lunate.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.