{"title":"从有界树宽的图中计算列表同态:复杂度紧约束","authors":"Jacob Focke, Dániel Marx, Paweł Rzążewski","doi":"10.1145/3640814","DOIUrl":null,"url":null,"abstract":"<p>The goal of this work is to give precise bounds on the counting complexity of a family of generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given graphs <i>G</i>, <i>H</i>, and lists <i>L</i>(<i>v</i>)⊆<i>V</i>(<i>H</i>) for every <i>v</i> ∈ <i>V</i>(<i>G</i>), a <i>list homomorphism</i> is a function <i>f</i>: <i>V</i>(<i>G</i>) → <i>V</i>(<i>H</i>) that preserves the edges (i.e., <i>uv</i> ∈ <i>E</i>(<i>G</i>) implies <i>f</i>(<i>u</i>)<i>f</i>(<i>v</i>) ∈ <i>E</i>(<i>H</i>)) and respects the lists (i.e., <i>f</i>(<i>v</i>) ∈ <i>L</i>(<i>v</i>)). Standard techniques show that if <i>G</i> is given with a tree decomposition of width <i>t</i>, then the number of list homomorphisms can be counted in time \\(|V(H)|^t\\cdot n^{\\mathcal {O}(1)} \\). Our main result is determining, for every fixed graph <i>H</i>, how much the base |<i>V</i>(<i>H</i>)| in the running time can be improved. For a connected graph <i>H</i> we define \\(\\operatorname{irr}(H) \\) in the following way: if <i>H</i> has a loop or is nonbipartite, then \\(\\operatorname{irr}(H) \\) is the maximum size of a set <i>S</i>⊆<i>V</i>(<i>H</i>) where any two vertices have different neighborhoods; if <i>H</i> is bipartite, then \\(\\operatorname{irr}(H) \\) is the maximum size of such a set that is fully in one of the bipartition classes. For disconnected <i>H</i>, we define \\(\\operatorname{irr}(H) \\) as the maximum of \\(\\operatorname{irr}(C) \\) over every connected component <i>C</i> of <i>H</i>. It follows from earlier results that if \\(\\operatorname{irr}(H)=1 \\), then the problem of counting list homomorphisms to <i>H</i> is polynomial-time solvable, and otherwise it is #P-hard. We show that, for every fixed graph <i>H</i>, the number of list homomorphisms from (<i>G</i>, <i>L</i>) to <i>H</i><p><table border=\"0\" list-type=\"bullet\" width=\"95%\"><tr><td valign=\"top\"><p>•</p></td><td colspan=\"5\" valign=\"top\"><p>can be counted in time \\(\\operatorname{irr}(H)^t\\cdot n^{\\mathcal {O}(1)} \\) if a tree decomposition of <i>G</i> having width at most <i>t</i> is given in the input, and</p></td></tr><tr><td valign=\"top\"><p>•</p></td><td colspan=\"5\" valign=\"top\"><p>given that \\(\\operatorname{irr}(H)\\ge 2 \\), cannot be counted in time \\((\\operatorname{irr}(H)-\\epsilon)^t\\cdot n^{\\mathcal {O}(1)} \\) for any ϵ > 0, even if a tree decomposition of <i>G</i> having width at most <i>t</i> is given in the input, unless the Counting Strong Exponential-Time Hypothesis (#SETH) fails.</p></td></tr></table></p>\nThereby we give a precise and complete complexity classification featuring matching upper and lower bounds for all target graphs with or without loops.</p>","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds\",\"authors\":\"Jacob Focke, Dániel Marx, Paweł Rzążewski\",\"doi\":\"10.1145/3640814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The goal of this work is to give precise bounds on the counting complexity of a family of generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given graphs <i>G</i>, <i>H</i>, and lists <i>L</i>(<i>v</i>)⊆<i>V</i>(<i>H</i>) for every <i>v</i> ∈ <i>V</i>(<i>G</i>), a <i>list homomorphism</i> is a function <i>f</i>: <i>V</i>(<i>G</i>) → <i>V</i>(<i>H</i>) that preserves the edges (i.e., <i>uv</i> ∈ <i>E</i>(<i>G</i>) implies <i>f</i>(<i>u</i>)<i>f</i>(<i>v</i>) ∈ <i>E</i>(<i>H</i>)) and respects the lists (i.e., <i>f</i>(<i>v</i>) ∈ <i>L</i>(<i>v</i>)). Standard techniques show that if <i>G</i> is given with a tree decomposition of width <i>t</i>, then the number of list homomorphisms can be counted in time \\\\(|V(H)|^t\\\\cdot n^{\\\\mathcal {O}(1)} \\\\). Our main result is determining, for every fixed graph <i>H</i>, how much the base |<i>V</i>(<i>H</i>)| in the running time can be improved. For a connected graph <i>H</i> we define \\\\(\\\\operatorname{irr}(H) \\\\) in the following way: if <i>H</i> has a loop or is nonbipartite, then \\\\(\\\\operatorname{irr}(H) \\\\) is the maximum size of a set <i>S</i>⊆<i>V</i>(<i>H</i>) where any two vertices have different neighborhoods; if <i>H</i> is bipartite, then \\\\(\\\\operatorname{irr}(H) \\\\) is the maximum size of such a set that is fully in one of the bipartition classes. For disconnected <i>H</i>, we define \\\\(\\\\operatorname{irr}(H) \\\\) as the maximum of \\\\(\\\\operatorname{irr}(C) \\\\) over every connected component <i>C</i> of <i>H</i>. It follows from earlier results that if \\\\(\\\\operatorname{irr}(H)=1 \\\\), then the problem of counting list homomorphisms to <i>H</i> is polynomial-time solvable, and otherwise it is #P-hard. We show that, for every fixed graph <i>H</i>, the number of list homomorphisms from (<i>G</i>, <i>L</i>) to <i>H</i><p><table border=\\\"0\\\" list-type=\\\"bullet\\\" width=\\\"95%\\\"><tr><td valign=\\\"top\\\"><p>•</p></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>can be counted in time \\\\(\\\\operatorname{irr}(H)^t\\\\cdot n^{\\\\mathcal {O}(1)} \\\\) if a tree decomposition of <i>G</i> having width at most <i>t</i> is given in the input, and</p></td></tr><tr><td valign=\\\"top\\\"><p>•</p></td><td colspan=\\\"5\\\" valign=\\\"top\\\"><p>given that \\\\(\\\\operatorname{irr}(H)\\\\ge 2 \\\\), cannot be counted in time \\\\((\\\\operatorname{irr}(H)-\\\\epsilon)^t\\\\cdot n^{\\\\mathcal {O}(1)} \\\\) for any ϵ > 0, even if a tree decomposition of <i>G</i> having width at most <i>t</i> is given in the input, unless the Counting Strong Exponential-Time Hypothesis (#SETH) fails.</p></td></tr></table></p>\\nThereby we give a precise and complete complexity classification featuring matching upper and lower bounds for all target graphs with or without loops.</p>\",\"PeriodicalId\":50922,\"journal\":{\"name\":\"ACM Transactions on Algorithms\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3640814\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3640814","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
这项研究的目标是给出有界三宽图上一系列广义着色问题(列表同态)的计数复杂度的精确边界。给定图 G、H 和每个 v ∈ V(G)的列表 L(v)⊆V(H),列表同态是一个函数 f:V(G) → V(H),它保留边(即 uv ∈ E(G)意味着 f(u)f(v)∈ E(H))并尊重列表(即 f(v)∈L(v))。标准技术表明,如果给定的 G 是宽度为 t 的树分解,那么列表同态的数量可以用时间来计算(|V(H)|^t\cdot n^{mathcal {O}(1)} \)。我们的主要结果是确定,对于每个固定图 H,运行时间中的基|V(H)|可以改进多少。对于连通图 H,我们按以下方式定义 \(\operatorname{irr}(H) \):如果 H 有一个环或者是非双分部的,那么 \(\operatorname{irr}(H) \)就是任意两个顶点有不同邻域的集合 S⊆V(H)的最大大小;如果 H 是双分部的,那么 \(\operatorname{irr}(H) \)就是完全属于双分部类之一的集合的最大大小。对于断开的 H,我们定义 \(\operatorname{irr}(H) \)为 H 的每个连通成分 C 上 \(\operatorname{irr}(C) \)的最大值。从之前的结果可以看出,如果 \(\operatorname{irr}(H)=1 \),那么计算 H 的列表同态问题就是多项式时间可解的,否则就是 #P 难的。我们证明,对于每一个固定图 H,如果输入中给出了宽度为 t 的 G 的树分解,那么从(G,L)到 H 的列表同态的数量可以在时间内计算(operatorname{irr}(H)^t\cdot n^{\mathcal {O}(1)} )、并且--考虑到 \(operatorname{irr}(H)\ge 2 \),对于任意 ϵ >;0,即使输入中给出了宽度为 t 的 G 树分解,除非计数强指数时间假说(#SETH)失效。因此,我们给出了一个精确而完整的复杂度分类,其特点是为所有有或没有循环的目标图提供了匹配的上界和下界。
Counting list homomorphisms from graphs of bounded treewidth: tight complexity bounds
The goal of this work is to give precise bounds on the counting complexity of a family of generalized coloring problems (list homomorphisms) on bounded-treewidth graphs. Given graphs G, H, and lists L(v)⊆V(H) for every v ∈ V(G), a list homomorphism is a function f: V(G) → V(H) that preserves the edges (i.e., uv ∈ E(G) implies f(u)f(v) ∈ E(H)) and respects the lists (i.e., f(v) ∈ L(v)). Standard techniques show that if G is given with a tree decomposition of width t, then the number of list homomorphisms can be counted in time \(|V(H)|^t\cdot n^{\mathcal {O}(1)} \). Our main result is determining, for every fixed graph H, how much the base |V(H)| in the running time can be improved. For a connected graph H we define \(\operatorname{irr}(H) \) in the following way: if H has a loop or is nonbipartite, then \(\operatorname{irr}(H) \) is the maximum size of a set S⊆V(H) where any two vertices have different neighborhoods; if H is bipartite, then \(\operatorname{irr}(H) \) is the maximum size of such a set that is fully in one of the bipartition classes. For disconnected H, we define \(\operatorname{irr}(H) \) as the maximum of \(\operatorname{irr}(C) \) over every connected component C of H. It follows from earlier results that if \(\operatorname{irr}(H)=1 \), then the problem of counting list homomorphisms to H is polynomial-time solvable, and otherwise it is #P-hard. We show that, for every fixed graph H, the number of list homomorphisms from (G, L) to H
•
can be counted in time \(\operatorname{irr}(H)^t\cdot n^{\mathcal {O}(1)} \) if a tree decomposition of G having width at most t is given in the input, and
•
given that \(\operatorname{irr}(H)\ge 2 \), cannot be counted in time \((\operatorname{irr}(H)-\epsilon)^t\cdot n^{\mathcal {O}(1)} \) for any ϵ > 0, even if a tree decomposition of G having width at most t is given in the input, unless the Counting Strong Exponential-Time Hypothesis (#SETH) fails.
Thereby we give a precise and complete complexity classification featuring matching upper and lower bounds for all target graphs with or without loops.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing