Chanwoong Park, Sucheol Ju, Wonjoong Kim, Hansang Sung, Hyoin Song, Jaein Park, Dongwoo Chae, Heon Lee
{"title":"多用途、低成本、高效益地制造具有高度有序周期性的大面积纳米管阵列","authors":"Chanwoong Park, Sucheol Ju, Wonjoong Kim, Hansang Sung, Hyoin Song, Jaein Park, Dongwoo Chae, Heon Lee","doi":"10.1016/j.apmt.2024.102063","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials typically exhibit physical and chemical properties that differ from those of conventional bulk materials owing to their nanometer-scale structures. Among them, nanotube arrays are characterized by their ability to exhibit remarkably aligned larger surface areas than those of existing arrays. Consequently, they have been used to increase efficiency in various fields such as sensing, energy storage and conversion, and optical communication. Processes such as anodic-aluminum-oxide templating, secondary sputtering, and sputtering are generally used to manufacture nanotube arrays. However, these methods have limitations in creating periodically aligned structures and precisely controlling nanotube characteristics such as diameter, period, and height. Therefore, a method combining direct printing and oblique-angle deposition (OAD) performed by e-beam evaporation is reported in this study for generating nanotubes with a highly ordered periodicity. Using this approach, nanotube arrays of various shapes and specifications can be manufactured by adjusting the type of master stamp used in the direct printing and the OAD parameters. Additionally, this scheme can be leveraged to produce nanotube arrays with metals, inorganic compounds, multilayer structures, and core–shell configurations.</p>","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"236 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Versatile cost-effective fabrication of large-area nanotube arrays with highly ordered periodicity\",\"authors\":\"Chanwoong Park, Sucheol Ju, Wonjoong Kim, Hansang Sung, Hyoin Song, Jaein Park, Dongwoo Chae, Heon Lee\",\"doi\":\"10.1016/j.apmt.2024.102063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterials typically exhibit physical and chemical properties that differ from those of conventional bulk materials owing to their nanometer-scale structures. Among them, nanotube arrays are characterized by their ability to exhibit remarkably aligned larger surface areas than those of existing arrays. Consequently, they have been used to increase efficiency in various fields such as sensing, energy storage and conversion, and optical communication. Processes such as anodic-aluminum-oxide templating, secondary sputtering, and sputtering are generally used to manufacture nanotube arrays. However, these methods have limitations in creating periodically aligned structures and precisely controlling nanotube characteristics such as diameter, period, and height. Therefore, a method combining direct printing and oblique-angle deposition (OAD) performed by e-beam evaporation is reported in this study for generating nanotubes with a highly ordered periodicity. Using this approach, nanotube arrays of various shapes and specifications can be manufactured by adjusting the type of master stamp used in the direct printing and the OAD parameters. Additionally, this scheme can be leveraged to produce nanotube arrays with metals, inorganic compounds, multilayer structures, and core–shell configurations.</p>\",\"PeriodicalId\":8066,\"journal\":{\"name\":\"Applied Materials Today\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Materials Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apmt.2024.102063\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102063","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Versatile cost-effective fabrication of large-area nanotube arrays with highly ordered periodicity
Nanomaterials typically exhibit physical and chemical properties that differ from those of conventional bulk materials owing to their nanometer-scale structures. Among them, nanotube arrays are characterized by their ability to exhibit remarkably aligned larger surface areas than those of existing arrays. Consequently, they have been used to increase efficiency in various fields such as sensing, energy storage and conversion, and optical communication. Processes such as anodic-aluminum-oxide templating, secondary sputtering, and sputtering are generally used to manufacture nanotube arrays. However, these methods have limitations in creating periodically aligned structures and precisely controlling nanotube characteristics such as diameter, period, and height. Therefore, a method combining direct printing and oblique-angle deposition (OAD) performed by e-beam evaporation is reported in this study for generating nanotubes with a highly ordered periodicity. Using this approach, nanotube arrays of various shapes and specifications can be manufactured by adjusting the type of master stamp used in the direct printing and the OAD parameters. Additionally, this scheme can be leveraged to produce nanotube arrays with metals, inorganic compounds, multilayer structures, and core–shell configurations.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.