多项式迭代的同源性

IF 0.5 4区 数学 Q3 MATHEMATICS
Himanshu Sharma, Ritumoni Sarma, Shanta Laishram
{"title":"多项式迭代的同源性","authors":"Himanshu Sharma,&nbsp;Ritumoni Sarma,&nbsp;Shanta Laishram","doi":"10.1007/s00013-023-01949-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we study the monogenity of a tower of number fields defined by the iterates of a stable polynomial. We give a necessary condition for the monogenity of the number fields defined by the iterates of a stable polynomial. When the stable polynomial is of certain type, we also give a sufficient condition for the monogenity of the fields defined by each of its iterate. As a consequence, we obtain an infinite 3-tower of monogenic number fields. Moreover, we construct an infinite family of stable polynomials such that each of its iterate is non-monogenic.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monogenity of iterates of polynomials\",\"authors\":\"Himanshu Sharma,&nbsp;Ritumoni Sarma,&nbsp;Shanta Laishram\",\"doi\":\"10.1007/s00013-023-01949-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, we study the monogenity of a tower of number fields defined by the iterates of a stable polynomial. We give a necessary condition for the monogenity of the number fields defined by the iterates of a stable polynomial. When the stable polynomial is of certain type, we also give a sufficient condition for the monogenity of the fields defined by each of its iterate. As a consequence, we obtain an infinite 3-tower of monogenic number fields. Moreover, we construct an infinite family of stable polynomials such that each of its iterate is non-monogenic.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01949-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01949-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文研究由稳定多项式迭代定义的数域塔的单原性。我们给出了由稳定多项式迭代定义的数域单原性的必要条件。当稳定多项式是某种类型时,我们还给出了它的每个迭代数所定义数域的单原性的充分条件。因此,我们得到了单源数域的无限 3 塔。此外,我们还构造了一个无限的稳定多项式族,使得它的每个迭代都是非单源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monogenity of iterates of polynomials

In this article, we study the monogenity of a tower of number fields defined by the iterates of a stable polynomial. We give a necessary condition for the monogenity of the number fields defined by the iterates of a stable polynomial. When the stable polynomial is of certain type, we also give a sufficient condition for the monogenity of the fields defined by each of its iterate. As a consequence, we obtain an infinite 3-tower of monogenic number fields. Moreover, we construct an infinite family of stable polynomials such that each of its iterate is non-monogenic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信