M. A. Eltaher, O. A. Aleryani, A. Melaibari, A. A. Abdelrahman
{"title":"使用有限元法研究生物灵感布里甘德复合板的弯曲和振动","authors":"M. A. Eltaher, O. A. Aleryani, A. Melaibari, A. A. Abdelrahman","doi":"10.1007/s11029-023-10166-y","DOIUrl":null,"url":null,"abstract":"<p>Biological structures, such as mantis shrimp crustacean, provide a rich source of inspiration for constructing high-performance materials with an excellent mechanical strength and impact resistance. Therefore, helicoidal structures inspired by mantis shrimp were investigated to explore the static and dynamic properties. The firstorder shear deformation theory of plates was used to describe the displacement field of laminated helicoidal composite plates. By the finite-element analysis (FEA), the bending and vibrations of bio-inspired composite plates were studied numerically using the ANSYS mechanical analysis software and the parametric design language APDL. Three classical orientations (unidirectional, cross-ply, and quasi-isotropic) and two helicoidal (linear and Fibonacci) orientations were considered. The “SHELL281” finite element of the APDL tool was exploited to solve the problem numerically with three integration points in each direction. The model proposed was verified, and its parametric studies were performed to clear up the effects of fiber orientation, slenderness ratio, and elasticity ratio on the static and free vibrations of a Bouligand composite plate. Results showed that the composite material had extraordinary mechanical properties, which is highly important for their unlimited applications in military industry and civil engineering.</p>","PeriodicalId":18308,"journal":{"name":"Mechanics of Composite Materials","volume":"22 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bending and Vibration of a Bio-Inspired Bouligand Composite Plate Using the Finite-Element Method\",\"authors\":\"M. A. Eltaher, O. A. Aleryani, A. Melaibari, A. A. Abdelrahman\",\"doi\":\"10.1007/s11029-023-10166-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Biological structures, such as mantis shrimp crustacean, provide a rich source of inspiration for constructing high-performance materials with an excellent mechanical strength and impact resistance. Therefore, helicoidal structures inspired by mantis shrimp were investigated to explore the static and dynamic properties. The firstorder shear deformation theory of plates was used to describe the displacement field of laminated helicoidal composite plates. By the finite-element analysis (FEA), the bending and vibrations of bio-inspired composite plates were studied numerically using the ANSYS mechanical analysis software and the parametric design language APDL. Three classical orientations (unidirectional, cross-ply, and quasi-isotropic) and two helicoidal (linear and Fibonacci) orientations were considered. The “SHELL281” finite element of the APDL tool was exploited to solve the problem numerically with three integration points in each direction. The model proposed was verified, and its parametric studies were performed to clear up the effects of fiber orientation, slenderness ratio, and elasticity ratio on the static and free vibrations of a Bouligand composite plate. Results showed that the composite material had extraordinary mechanical properties, which is highly important for their unlimited applications in military industry and civil engineering.</p>\",\"PeriodicalId\":18308,\"journal\":{\"name\":\"Mechanics of Composite Materials\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11029-023-10166-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11029-023-10166-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Bending and Vibration of a Bio-Inspired Bouligand Composite Plate Using the Finite-Element Method
Biological structures, such as mantis shrimp crustacean, provide a rich source of inspiration for constructing high-performance materials with an excellent mechanical strength and impact resistance. Therefore, helicoidal structures inspired by mantis shrimp were investigated to explore the static and dynamic properties. The firstorder shear deformation theory of plates was used to describe the displacement field of laminated helicoidal composite plates. By the finite-element analysis (FEA), the bending and vibrations of bio-inspired composite plates were studied numerically using the ANSYS mechanical analysis software and the parametric design language APDL. Three classical orientations (unidirectional, cross-ply, and quasi-isotropic) and two helicoidal (linear and Fibonacci) orientations were considered. The “SHELL281” finite element of the APDL tool was exploited to solve the problem numerically with three integration points in each direction. The model proposed was verified, and its parametric studies were performed to clear up the effects of fiber orientation, slenderness ratio, and elasticity ratio on the static and free vibrations of a Bouligand composite plate. Results showed that the composite material had extraordinary mechanical properties, which is highly important for their unlimited applications in military industry and civil engineering.
期刊介绍:
Mechanics of Composite Materials is a peer-reviewed international journal that encourages publication of original experimental and theoretical research on the mechanical properties of composite materials and their constituents including, but not limited to:
damage, failure, fatigue, and long-term strength;
methods of optimum design of materials and structures;
prediction of long-term properties and aging problems;
nondestructive testing;
mechanical aspects of technology;
mechanics of nanocomposites;
mechanics of biocomposites;
composites in aerospace and wind-power engineering;
composites in civil engineering and infrastructure
and other composites applications.