通过实验了解 P3HT:PCBM 块状异质结太阳能电池劣化的原因

IF 1.204 Q3 Energy
Tirukoti Mounika, Shiddappa L. Belagali, Inderpreet Singh, Kuldeep Kumar, P. Arun
{"title":"通过实验了解 P3HT:PCBM 块状异质结太阳能电池劣化的原因","authors":"Tirukoti Mounika,&nbsp;Shiddappa L. Belagali,&nbsp;Inderpreet Singh,&nbsp;Kuldeep Kumar,&nbsp;P. Arun","doi":"10.3103/S0003701X23600509","DOIUrl":null,"url":null,"abstract":"<p>In the present work, degradation mechanism in P3HT:PCBM bulk heterojunction photo-voltaic devices has been explored. For this purpose, the JV characteristics of eight P3HT:PCBM solar cell structures fabricated under identical conditions, were studied on hourly basis. Without exception, the power conversion efficiency (PCE) of the solar cells is found to fall off exponentially that saturates within six hours. The decay and rise time of the photo-current in the devices were also studied. The nature of the graphs negates the possibility of surface oxidation and generation of trap centers in the photo-active film. Thus, phase separation of P3HT and PCBM domains is expected to be the root cause of device degradation.</p>","PeriodicalId":475,"journal":{"name":"Applied Solar Energy","volume":"59 4","pages":"410 - 415"},"PeriodicalIF":1.2040,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Insight into the Reasons for Deterioration of P3HT:PCBM Bulk Heterojunction Solar Cells\",\"authors\":\"Tirukoti Mounika,&nbsp;Shiddappa L. Belagali,&nbsp;Inderpreet Singh,&nbsp;Kuldeep Kumar,&nbsp;P. Arun\",\"doi\":\"10.3103/S0003701X23600509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the present work, degradation mechanism in P3HT:PCBM bulk heterojunction photo-voltaic devices has been explored. For this purpose, the JV characteristics of eight P3HT:PCBM solar cell structures fabricated under identical conditions, were studied on hourly basis. Without exception, the power conversion efficiency (PCE) of the solar cells is found to fall off exponentially that saturates within six hours. The decay and rise time of the photo-current in the devices were also studied. The nature of the graphs negates the possibility of surface oxidation and generation of trap centers in the photo-active film. Thus, phase separation of P3HT and PCBM domains is expected to be the root cause of device degradation.</p>\",\"PeriodicalId\":475,\"journal\":{\"name\":\"Applied Solar Energy\",\"volume\":\"59 4\",\"pages\":\"410 - 415\"},\"PeriodicalIF\":1.2040,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Solar Energy\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0003701X23600509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Solar Energy","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.3103/S0003701X23600509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本研究探讨了 P3HT:PCBM 体异质结光电设备的降解机制。为此,对在相同条件下制造的八种 P3HT:PCBM 太阳能电池结构的 JV 特性进行了小时研究。结果发现,太阳能电池的功率转换效率(PCE)无一例外地呈指数下降,并在六小时内达到饱和。此外,还研究了器件中光电流的衰减和上升时间。图表的性质否定了光活性薄膜表面氧化和产生陷阱中心的可能性。因此,预计 P3HT 和 PCBM 域的相分离是器件降解的根本原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Experimental Insight into the Reasons for Deterioration of P3HT:PCBM Bulk Heterojunction Solar Cells

An Experimental Insight into the Reasons for Deterioration of P3HT:PCBM Bulk Heterojunction Solar Cells

An Experimental Insight into the Reasons for Deterioration of P3HT:PCBM Bulk Heterojunction Solar Cells

In the present work, degradation mechanism in P3HT:PCBM bulk heterojunction photo-voltaic devices has been explored. For this purpose, the JV characteristics of eight P3HT:PCBM solar cell structures fabricated under identical conditions, were studied on hourly basis. Without exception, the power conversion efficiency (PCE) of the solar cells is found to fall off exponentially that saturates within six hours. The decay and rise time of the photo-current in the devices were also studied. The nature of the graphs negates the possibility of surface oxidation and generation of trap centers in the photo-active film. Thus, phase separation of P3HT and PCBM domains is expected to be the root cause of device degradation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Solar Energy
Applied Solar Energy Energy-Renewable Energy, Sustainability and the Environment
CiteScore
2.50
自引率
0.00%
发文量
0
期刊介绍: Applied Solar Energy  is an international peer reviewed journal covers various topics of research and development studies on solar energy conversion and use: photovoltaics, thermophotovoltaics, water heaters, passive solar heating systems, drying of agricultural production, water desalination, solar radiation condensers, operation of Big Solar Oven, combined use of solar energy and traditional energy sources, new semiconductors for solar cells and thermophotovoltaic system photocells, engines for autonomous solar stations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信