地球气候的宇宙调节器

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
G. A. Avanesov, B. S. Zhukov, M. V. Mikhailov, B. G. Sherstyukov
{"title":"地球气候的宇宙调节器","authors":"G. A. Avanesov, B. S. Zhukov, M. V. Mikhailov, B. G. Sherstyukov","doi":"10.1134/s0038094623060011","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A discussion is presented of the effects generated by the imbalance between the insolation energy of polar-day zones and the radiation energy of polar-night zones on multicentennial changes in the Earth’s climate. The dependence of this imbalance on the Earth’s orbital parameters is determined. The energy imbalance curves are compared with the known temperature curves for the polar regions, which have been estimated from the results of an analysis of ice cores taken in Antarctica and Greenland. The curves clearly reveal a difference between the contributions of cosmic and terrestrial factors to the temperature profiles for the regions in question and demonstrate a synchronicity of these factors. Algorithms are obtained for calculating the magnitude of fluctuations in the size of the Earth’s polar caps relative to their averages. The results obtained within the assumptions taken in this work enable predictions to be made about the development of the current global warming and about changes in the size of the Arctic and Antarctic polar caps. It is predicted that over the next three millennia, changes in the Earth’s orbital parameters will contribute to the slow melting of the northern polar cap. Then, the trend for a new growth of the northern polar cap will again manifest itself. In the Southern Hemisphere, a trend towards increased glaciation has already formed. Influenced by the cosmic factor, it will intensify over the next 20 000 years.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cosmic Regulators of the Earth’s Climate\",\"authors\":\"G. A. Avanesov, B. S. Zhukov, M. V. Mikhailov, B. G. Sherstyukov\",\"doi\":\"10.1134/s0038094623060011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A discussion is presented of the effects generated by the imbalance between the insolation energy of polar-day zones and the radiation energy of polar-night zones on multicentennial changes in the Earth’s climate. The dependence of this imbalance on the Earth’s orbital parameters is determined. The energy imbalance curves are compared with the known temperature curves for the polar regions, which have been estimated from the results of an analysis of ice cores taken in Antarctica and Greenland. The curves clearly reveal a difference between the contributions of cosmic and terrestrial factors to the temperature profiles for the regions in question and demonstrate a synchronicity of these factors. Algorithms are obtained for calculating the magnitude of fluctuations in the size of the Earth’s polar caps relative to their averages. The results obtained within the assumptions taken in this work enable predictions to be made about the development of the current global warming and about changes in the size of the Arctic and Antarctic polar caps. It is predicted that over the next three millennia, changes in the Earth’s orbital parameters will contribute to the slow melting of the northern polar cap. Then, the trend for a new growth of the northern polar cap will again manifest itself. In the Southern Hemisphere, a trend towards increased glaciation has already formed. Influenced by the cosmic factor, it will intensify over the next 20 000 years.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0038094623060011\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094623060011","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 讨论了极昼区的日照能量和极夜区的辐射能量之间的不平衡对地球气候多年变化的影响。确定了这种不平衡与地球轨道参数的关系。能量不平衡曲线与已知的极地温度曲线进行了比较,后者是根据对南极洲和格陵兰岛冰芯的分析结果估算出来的。这些曲线清楚地揭示了宇宙因素和陆地因素对有关地区温度曲线影响的差异,并证明了这些因素的同步性。还获得了计算地球极冠大小相对于其平均值的波动幅度的算法。根据这项工作中的假设得出的结果,可以预测当前全球变暖的发展情况以及北极和南极极冠面积的变化。据预测,在未来三千年里,地球轨道参数的变化将导致北极极冠缓慢融化。然后,北极盖新的增长趋势将再次显现。在南半球,冰川加剧的趋势已经形成。受宇宙因素的影响,在未来的两万年里,这种趋势将会加剧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cosmic Regulators of the Earth’s Climate

Cosmic Regulators of the Earth’s Climate

Abstract

A discussion is presented of the effects generated by the imbalance between the insolation energy of polar-day zones and the radiation energy of polar-night zones on multicentennial changes in the Earth’s climate. The dependence of this imbalance on the Earth’s orbital parameters is determined. The energy imbalance curves are compared with the known temperature curves for the polar regions, which have been estimated from the results of an analysis of ice cores taken in Antarctica and Greenland. The curves clearly reveal a difference between the contributions of cosmic and terrestrial factors to the temperature profiles for the regions in question and demonstrate a synchronicity of these factors. Algorithms are obtained for calculating the magnitude of fluctuations in the size of the Earth’s polar caps relative to their averages. The results obtained within the assumptions taken in this work enable predictions to be made about the development of the current global warming and about changes in the size of the Arctic and Antarctic polar caps. It is predicted that over the next three millennia, changes in the Earth’s orbital parameters will contribute to the slow melting of the northern polar cap. Then, the trend for a new growth of the northern polar cap will again manifest itself. In the Southern Hemisphere, a trend towards increased glaciation has already formed. Influenced by the cosmic factor, it will intensify over the next 20 000 years.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信