带 VSCL 面板和多孔功能分级夹芯的三明治板的三维自由振动分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mohammed Hachemi, Ahmed Guenanou, Redouane Chebout, Fouzia Touahra, Khaldoun Bachari
{"title":"带 VSCL 面板和多孔功能分级夹芯的三明治板的三维自由振动分析","authors":"Mohammed Hachemi, Ahmed Guenanou, Redouane Chebout, Fouzia Touahra, Khaldoun Bachari","doi":"10.1007/s40997-023-00744-9","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the free vibration analysis of sandwich plates with variable stiffness composite laminated (VSCL) face sheets and a functionally graded (FG) porous core. The problem is solved using the hierarchical finite element method (FEM) based on the three-dimensional (3-D) elasticity theory. The use of an FG material core in a VSCL sandwich plate offers many advantages in terms of lightweight properties, high stiffness, as well as high strength and toughness. The sandwich plate is modeled by an assembly of 3-D <i>p</i>-elements, where each element or layer has an independent thickness and material properties. The layers of the sandwich plate are assumed to be perfectly bonded between the interfaces. The present 3-D solutions are validated through convergence and comparison studies with the published results of various sandwich plates that employ different theories and methods. A parametric study is performed to investigate the effects of several factors, including the volume fraction function index, porosity, core-to-face sheet thickness ratio, plate thickness, fiber orientation angles and boundary conditions on the vibrational frequencies. The results show that the incorporation of composite curvilinear fibers in the face sheets, combined with a porous FG core, significantly enhances the stiffness of the sandwich plate. These results can be used to establish benchmarks for future comparisons.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-Dimensional Free Vibration Analysis of Sandwich Plates with VSCL Face Sheets and Porous Functionally Graded Core\",\"authors\":\"Mohammed Hachemi, Ahmed Guenanou, Redouane Chebout, Fouzia Touahra, Khaldoun Bachari\",\"doi\":\"10.1007/s40997-023-00744-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper focuses on the free vibration analysis of sandwich plates with variable stiffness composite laminated (VSCL) face sheets and a functionally graded (FG) porous core. The problem is solved using the hierarchical finite element method (FEM) based on the three-dimensional (3-D) elasticity theory. The use of an FG material core in a VSCL sandwich plate offers many advantages in terms of lightweight properties, high stiffness, as well as high strength and toughness. The sandwich plate is modeled by an assembly of 3-D <i>p</i>-elements, where each element or layer has an independent thickness and material properties. The layers of the sandwich plate are assumed to be perfectly bonded between the interfaces. The present 3-D solutions are validated through convergence and comparison studies with the published results of various sandwich plates that employ different theories and methods. A parametric study is performed to investigate the effects of several factors, including the volume fraction function index, porosity, core-to-face sheet thickness ratio, plate thickness, fiber orientation angles and boundary conditions on the vibrational frequencies. The results show that the incorporation of composite curvilinear fibers in the face sheets, combined with a porous FG core, significantly enhances the stiffness of the sandwich plate. These results can be used to establish benchmarks for future comparisons.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40997-023-00744-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00744-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文重点研究了具有可变刚度复合层压(VSCL)面片和功能分级(FG)多孔芯材的夹层板的自由振动分析。该问题采用基于三维(3-D)弹性理论的分层有限元法(FEM)进行求解。在 VSCL 夹层板中使用功能分层材料芯材具有轻质、高刚度、高强度和高韧性等诸多优点。夹层板由三维 p 元素组合而成,每个元素或层都有独立的厚度和材料属性。假设夹层板各层界面之间完全粘合。通过收敛和与采用不同理论和方法的各种夹层板的已公布结果进行比较研究,验证了本三维解决方案。进行了一项参数研究,以探讨多个因素对振动频率的影响,包括体积分数函数指数、孔隙率、芯材与面层板材厚度比、板材厚度、纤维取向角和边界条件。结果表明,在面片中加入复合曲线纤维,再加上多孔 FG 芯材,可显著增强夹层板的刚度。这些结果可用于建立未来比较的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Three-Dimensional Free Vibration Analysis of Sandwich Plates with VSCL Face Sheets and Porous Functionally Graded Core

Three-Dimensional Free Vibration Analysis of Sandwich Plates with VSCL Face Sheets and Porous Functionally Graded Core

This paper focuses on the free vibration analysis of sandwich plates with variable stiffness composite laminated (VSCL) face sheets and a functionally graded (FG) porous core. The problem is solved using the hierarchical finite element method (FEM) based on the three-dimensional (3-D) elasticity theory. The use of an FG material core in a VSCL sandwich plate offers many advantages in terms of lightweight properties, high stiffness, as well as high strength and toughness. The sandwich plate is modeled by an assembly of 3-D p-elements, where each element or layer has an independent thickness and material properties. The layers of the sandwich plate are assumed to be perfectly bonded between the interfaces. The present 3-D solutions are validated through convergence and comparison studies with the published results of various sandwich plates that employ different theories and methods. A parametric study is performed to investigate the effects of several factors, including the volume fraction function index, porosity, core-to-face sheet thickness ratio, plate thickness, fiber orientation angles and boundary conditions on the vibrational frequencies. The results show that the incorporation of composite curvilinear fibers in the face sheets, combined with a porous FG core, significantly enhances the stiffness of the sandwich plate. These results can be used to establish benchmarks for future comparisons.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信