{"title":"直接金属沉积金属陶瓷轨道的缩放规律","authors":"A. A. Golyshev, N. A. Sibiryakova","doi":"10.1134/S0021894423050115","DOIUrl":null,"url":null,"abstract":"<p>Dimensionless parameters and scaling laws that describe the geometric dimensions of a cermet weld bead formed during direct metal deposition are determined. A Ti64 titanium alloy and ceramics (silicon carbide, SiC) with different volume fractions are used as a powder mixture. A model for estimating the thermophysical parameters of a heterogeneous material is proposed. It is shown that, regardless of the volume fraction of ceramics, the dimensionless geometric parameters of a single track (depth, width, and height) depend on two dimensionless parameters: normalized enthalpy and the Peclet number. Also, these dependences can be approximated by algebraic expressions.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"64 5","pages":"821 - 826"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SCALING LAWS IN DIRECT METAL DEPOSITION OF CERMET TRACKS\",\"authors\":\"A. A. Golyshev, N. A. Sibiryakova\",\"doi\":\"10.1134/S0021894423050115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dimensionless parameters and scaling laws that describe the geometric dimensions of a cermet weld bead formed during direct metal deposition are determined. A Ti64 titanium alloy and ceramics (silicon carbide, SiC) with different volume fractions are used as a powder mixture. A model for estimating the thermophysical parameters of a heterogeneous material is proposed. It is shown that, regardless of the volume fraction of ceramics, the dimensionless geometric parameters of a single track (depth, width, and height) depend on two dimensionless parameters: normalized enthalpy and the Peclet number. Also, these dependences can be approximated by algebraic expressions.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"64 5\",\"pages\":\"821 - 826\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894423050115\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894423050115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
SCALING LAWS IN DIRECT METAL DEPOSITION OF CERMET TRACKS
Dimensionless parameters and scaling laws that describe the geometric dimensions of a cermet weld bead formed during direct metal deposition are determined. A Ti64 titanium alloy and ceramics (silicon carbide, SiC) with different volume fractions are used as a powder mixture. A model for estimating the thermophysical parameters of a heterogeneous material is proposed. It is shown that, regardless of the volume fraction of ceramics, the dimensionless geometric parameters of a single track (depth, width, and height) depend on two dimensionless parameters: normalized enthalpy and the Peclet number. Also, these dependences can be approximated by algebraic expressions.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.