典型属 4 曲线几何学

IF 1.5 1区 数学 Q1 MATHEMATICS
Fatemeh Rezaee
{"title":"典型属 4 曲线几何学","authors":"Fatemeh Rezaee","doi":"10.1112/plms.12577","DOIUrl":null,"url":null,"abstract":"We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall-crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall-crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall-crossing techniques.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"13 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometry of canonical genus 4 curves\",\"authors\":\"Fatemeh Rezaee\",\"doi\":\"10.1112/plms.12577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall-crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall-crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall-crossing techniques.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12577\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12577","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将布里奇兰稳定性条件的机制应用于相干剪切的派生范畴,通过对其壁交的有效控制来描述与典型属4空间曲线相关的经典模空间的几何。本文首次描述了潘达里潘德-托马斯稳定对的模空间,并将其作为描述相关希尔伯特方案的中间步骤。我们给出了稳定对空间不可还原成分的完整列表,以及每个成分的双向描述和希尔伯特方案的部分列表。关于经典剪子理论模空间有几个长期未决的问题,本研究将为进一步研究此类模空间(如曲线的希尔伯特方案和稳定对的模空间)提供启发,而不使用壁交技术是很难解决这些问题的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometry of canonical genus 4 curves
We apply the machinery of Bridgeland stability conditions on derived categories of coherent sheaves to describe the geometry of classical moduli spaces associated with canonical genus 4 space curves via an effective control over its wall-crossing. This article provides the first description of a moduli space of Pandharipande–Thomas stable pairs that is used as an intermediate step toward the description of the associated Hilbert scheme, which in turn is the first example where the components of a classical moduli space were completely determined via wall-crossing. We give a full list of irreducible components of the space of stable pairs, along with a birational description of each component, and a partial list for the Hilbert scheme. There are several long standing open problems regarding classical sheaf theoretic moduli spaces, and the present work will shed light on further studies of such moduli spaces such as Hilbert schemes of curves and moduli of stable pairs that are very hard to tackle without the wall-crossing techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信