{"title":"从振动测试数据中获取薄型复合结构的弹性特性","authors":"Vitalii Aksenov, Alexey Vasyukov, Katerina Beklemysheva","doi":"10.1515/jiip-2022-0081","DOIUrl":null,"url":null,"abstract":"The paper is devoted to a problem of acquiring elastic properties of a composite material from the vibration testing data with a simplified experimental acquisition scheme. The specimen is considered to abide by the linear elasticity laws and subject to viscoelastic damping. The boundary value problem for transverse movement of such a specimen in the frequency domain is formulated and solved with finite-element method. The correction method is suggested for the finite element matrices to account for the mass of the accelerometer. The problem of acquiring the elastic parameters is then formulated as a nonlinear least-square optimization problem. The usage of the automatic differentiation technique for stable and efficient computation of the gradient and hessian allows to use well-studied first and second order local optimization methods. We also explore the possibility of generating initial guesses for local minimization by heuristic global methods. The results of the numerical experiments on simulated data are analyzed in order to provide insights for the following real life experiments.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"9 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acquiring elastic properties of thin composite structure from vibrational testing data\",\"authors\":\"Vitalii Aksenov, Alexey Vasyukov, Katerina Beklemysheva\",\"doi\":\"10.1515/jiip-2022-0081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is devoted to a problem of acquiring elastic properties of a composite material from the vibration testing data with a simplified experimental acquisition scheme. The specimen is considered to abide by the linear elasticity laws and subject to viscoelastic damping. The boundary value problem for transverse movement of such a specimen in the frequency domain is formulated and solved with finite-element method. The correction method is suggested for the finite element matrices to account for the mass of the accelerometer. The problem of acquiring the elastic parameters is then formulated as a nonlinear least-square optimization problem. The usage of the automatic differentiation technique for stable and efficient computation of the gradient and hessian allows to use well-studied first and second order local optimization methods. We also explore the possibility of generating initial guesses for local minimization by heuristic global methods. The results of the numerical experiments on simulated data are analyzed in order to provide insights for the following real life experiments.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2022-0081\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2022-0081","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Acquiring elastic properties of thin composite structure from vibrational testing data
The paper is devoted to a problem of acquiring elastic properties of a composite material from the vibration testing data with a simplified experimental acquisition scheme. The specimen is considered to abide by the linear elasticity laws and subject to viscoelastic damping. The boundary value problem for transverse movement of such a specimen in the frequency domain is formulated and solved with finite-element method. The correction method is suggested for the finite element matrices to account for the mass of the accelerometer. The problem of acquiring the elastic parameters is then formulated as a nonlinear least-square optimization problem. The usage of the automatic differentiation technique for stable and efficient computation of the gradient and hessian allows to use well-studied first and second order local optimization methods. We also explore the possibility of generating initial guesses for local minimization by heuristic global methods. The results of the numerical experiments on simulated data are analyzed in order to provide insights for the following real life experiments.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography