大脑结构和功能的主要和独立基因组成分。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lennart M. Oblong, Sourena Soheili-Nezhad, Nicolò Trevisan, Yingjie Shi, Christian F. Beckmann, Emma Sprooten
{"title":"大脑结构和功能的主要和独立基因组成分。","authors":"Lennart M. Oblong,&nbsp;Sourena Soheili-Nezhad,&nbsp;Nicolò Trevisan,&nbsp;Yingjie Shi,&nbsp;Christian F. Beckmann,&nbsp;Emma Sprooten","doi":"10.1111/gbb.12876","DOIUrl":null,"url":null,"abstract":"<p>The highly polygenic and pleiotropic nature of behavioural traits, psychiatric disorders and structural and functional brain phenotypes complicate mechanistic interpretation of related genome-wide association study (GWAS) signals, thereby obscuring underlying causal biological processes. We propose genomic principal and independent component analysis (PCA, ICA) to decompose a large set of univariate GWAS statistics of multimodal brain traits into more interpretable latent genomic components. Here we introduce and evaluate this novel methods various analytic parameters and reproducibility across independent samples. Two UK Biobank GWAS summary statistic releases of 2240 imaging-derived phenotypes (IDPs) were retrieved. Genome-wide beta-values and their corresponding standard-error scaled <i>z</i>-values were decomposed using genomic PCA/ICA. We evaluated variance explained at multiple dimensions up to 200. We tested the inter-sample reproducibility of output of dimensions 5, 10, 25 and 50. Reproducibility statistics of the respective univariate GWAS served as benchmarks. Reproducibility of 10-dimensional PCs and ICs showed the best trade-off between model complexity and robustness and variance explained (PCs: |<i>r</i><sub><i>z</i></sub> − max| = 0.33, |<i>r</i><sub>raw</sub> − max| = 0.30; ICs: |<i>r</i><sub><i>z</i></sub> − max| = 0.23, |<i>r</i><sub>raw</sub> − max| = 0.19). Genomic PC and IC reproducibility improved substantially relative to mean univariate GWAS reproducibility up to dimension 10. Genomic components clustered along neuroimaging modalities. Our results indicate that genomic PCA and ICA decompose genetic effects on IDPs from GWAS statistics with high reproducibility by taking advantage of the inherent pleiotropic patterns. These findings encourage further applications of genomic PCA and ICA as fully data-driven methods to effectively reduce the dimensionality, enhance the signal to noise ratio and improve interpretability of high-dimensional multitrait genome-wide analyses.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12876","citationCount":"0","resultStr":"{\"title\":\"Principal and independent genomic components of brain structure and function\",\"authors\":\"Lennart M. Oblong,&nbsp;Sourena Soheili-Nezhad,&nbsp;Nicolò Trevisan,&nbsp;Yingjie Shi,&nbsp;Christian F. Beckmann,&nbsp;Emma Sprooten\",\"doi\":\"10.1111/gbb.12876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The highly polygenic and pleiotropic nature of behavioural traits, psychiatric disorders and structural and functional brain phenotypes complicate mechanistic interpretation of related genome-wide association study (GWAS) signals, thereby obscuring underlying causal biological processes. We propose genomic principal and independent component analysis (PCA, ICA) to decompose a large set of univariate GWAS statistics of multimodal brain traits into more interpretable latent genomic components. Here we introduce and evaluate this novel methods various analytic parameters and reproducibility across independent samples. Two UK Biobank GWAS summary statistic releases of 2240 imaging-derived phenotypes (IDPs) were retrieved. Genome-wide beta-values and their corresponding standard-error scaled <i>z</i>-values were decomposed using genomic PCA/ICA. We evaluated variance explained at multiple dimensions up to 200. We tested the inter-sample reproducibility of output of dimensions 5, 10, 25 and 50. Reproducibility statistics of the respective univariate GWAS served as benchmarks. Reproducibility of 10-dimensional PCs and ICs showed the best trade-off between model complexity and robustness and variance explained (PCs: |<i>r</i><sub><i>z</i></sub> − max| = 0.33, |<i>r</i><sub>raw</sub> − max| = 0.30; ICs: |<i>r</i><sub><i>z</i></sub> − max| = 0.23, |<i>r</i><sub>raw</sub> − max| = 0.19). Genomic PC and IC reproducibility improved substantially relative to mean univariate GWAS reproducibility up to dimension 10. Genomic components clustered along neuroimaging modalities. Our results indicate that genomic PCA and ICA decompose genetic effects on IDPs from GWAS statistics with high reproducibility by taking advantage of the inherent pleiotropic patterns. These findings encourage further applications of genomic PCA and ICA as fully data-driven methods to effectively reduce the dimensionality, enhance the signal to noise ratio and improve interpretability of high-dimensional multitrait genome-wide analyses.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gbb.12876\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12876\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gbb.12876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

行为特征、精神疾病以及大脑结构和功能表型具有高度的多基因和多效应性,这使得对相关全基因组关联研究(GWAS)信号的机理解释变得复杂,从而掩盖了潜在的因果生物学过程。我们提出了基因组主成分和独立成分分析(PCA、ICA)方法,将大量多模态脑特征的单变量 GWAS 统计数据分解为更易于解释的潜在基因组成分。在此,我们介绍并评估了这种新方法的各种分析参数以及在独立样本中的可重复性。我们检索了两份英国生物库 GWAS 统计摘要,其中包含 2240 个成像衍生表型(IDP)。使用基因组 PCA/ICA 对全基因组 beta 值及其相应的标准误差缩放 z 值进行了分解。我们评估了多达 200 个维度的解释方差。我们测试了 5、10、25 和 50 维输出的样本间重现性。各单变量 GWAS 的再现性统计作为基准。10 维 PCs 和 ICs 的可重复性显示了模型复杂性与稳健性和解释方差之间的最佳权衡(PCs:|rz-max|=0.33,|rraw-max|=0.30;ICs:|rz - max| = 0.23,|rraw - max| = 0.19)。与平均单变量 GWAS 重现性相比,基因组 PC 和 IC 重现性在维度 10 之前都有大幅提高。基因组成分按照神经成像模式聚类。我们的研究结果表明,基因组 PCA 和 ICA 利用固有的多向模式,从 GWAS 统计数据中分解出对 IDPs 的遗传效应,具有很高的可重复性。这些发现鼓励进一步应用基因组 PCA 和 ICA 作为完全数据驱动的方法,以有效降低维度、提高信噪比并改善高维多特征全基因组分析的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Principal and independent genomic components of brain structure and function

Principal and independent genomic components of brain structure and function

Principal and independent genomic components of brain structure and function

The highly polygenic and pleiotropic nature of behavioural traits, psychiatric disorders and structural and functional brain phenotypes complicate mechanistic interpretation of related genome-wide association study (GWAS) signals, thereby obscuring underlying causal biological processes. We propose genomic principal and independent component analysis (PCA, ICA) to decompose a large set of univariate GWAS statistics of multimodal brain traits into more interpretable latent genomic components. Here we introduce and evaluate this novel methods various analytic parameters and reproducibility across independent samples. Two UK Biobank GWAS summary statistic releases of 2240 imaging-derived phenotypes (IDPs) were retrieved. Genome-wide beta-values and their corresponding standard-error scaled z-values were decomposed using genomic PCA/ICA. We evaluated variance explained at multiple dimensions up to 200. We tested the inter-sample reproducibility of output of dimensions 5, 10, 25 and 50. Reproducibility statistics of the respective univariate GWAS served as benchmarks. Reproducibility of 10-dimensional PCs and ICs showed the best trade-off between model complexity and robustness and variance explained (PCs: |rz − max| = 0.33, |rraw − max| = 0.30; ICs: |rz − max| = 0.23, |rraw − max| = 0.19). Genomic PC and IC reproducibility improved substantially relative to mean univariate GWAS reproducibility up to dimension 10. Genomic components clustered along neuroimaging modalities. Our results indicate that genomic PCA and ICA decompose genetic effects on IDPs from GWAS statistics with high reproducibility by taking advantage of the inherent pleiotropic patterns. These findings encourage further applications of genomic PCA and ICA as fully data-driven methods to effectively reduce the dimensionality, enhance the signal to noise ratio and improve interpretability of high-dimensional multitrait genome-wide analyses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信