Carlos H M Rodrigues, Stephanie Portelli, David B Ascher
{"title":"通过基于结构的方法探索错义突变对蛋白质热力学的影响:来自 CAGI6 挑战的发现。","authors":"Carlos H M Rodrigues, Stephanie Portelli, David B Ascher","doi":"10.1007/s00439-023-02623-4","DOIUrl":null,"url":null,"abstract":"<p><p>Missense mutations are known contributors to diverse genetic disorders, due to their subtle, single amino acid changes imparted on the resultant protein. Because of this, understanding the impact of these mutations on protein stability and function is crucial for unravelling disease mechanisms and developing targeted therapies. The Critical Assessment of Genome Interpretation (CAGI) provides a valuable platform for benchmarking state-of-the-art computational methods in predicting the impact of disease-related mutations on protein thermodynamics. Here we report the performance of our comprehensive platform of structure-based computational approaches to evaluate mutations impacting protein structure and function on 3 challenges from CAGI6: Calmodulin, MAPK1 and MAPK3. Our stability predictors have achieved correlations of up to 0.74 and AUCs of 1 when predicting changes in ΔΔG for MAPK1 and MAPK3, respectively, and AUC of up to 0.75 in the Calmodulin challenge. Overall, our study highlights the importance of structure-based approaches in understanding the effects of missense mutations on protein thermodynamics. The results obtained from the CAGI6 challenges contribute to the ongoing efforts to enhance our understanding of disease mechanisms and facilitate the development of personalised medicine approaches.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"327-335"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the effects of missense mutations on protein thermodynamics through structure-based approaches: findings from the CAGI6 challenges.\",\"authors\":\"Carlos H M Rodrigues, Stephanie Portelli, David B Ascher\",\"doi\":\"10.1007/s00439-023-02623-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Missense mutations are known contributors to diverse genetic disorders, due to their subtle, single amino acid changes imparted on the resultant protein. Because of this, understanding the impact of these mutations on protein stability and function is crucial for unravelling disease mechanisms and developing targeted therapies. The Critical Assessment of Genome Interpretation (CAGI) provides a valuable platform for benchmarking state-of-the-art computational methods in predicting the impact of disease-related mutations on protein thermodynamics. Here we report the performance of our comprehensive platform of structure-based computational approaches to evaluate mutations impacting protein structure and function on 3 challenges from CAGI6: Calmodulin, MAPK1 and MAPK3. Our stability predictors have achieved correlations of up to 0.74 and AUCs of 1 when predicting changes in ΔΔG for MAPK1 and MAPK3, respectively, and AUC of up to 0.75 in the Calmodulin challenge. Overall, our study highlights the importance of structure-based approaches in understanding the effects of missense mutations on protein thermodynamics. The results obtained from the CAGI6 challenges contribute to the ongoing efforts to enhance our understanding of disease mechanisms and facilitate the development of personalised medicine approaches.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"327-335\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-023-02623-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-023-02623-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Exploring the effects of missense mutations on protein thermodynamics through structure-based approaches: findings from the CAGI6 challenges.
Missense mutations are known contributors to diverse genetic disorders, due to their subtle, single amino acid changes imparted on the resultant protein. Because of this, understanding the impact of these mutations on protein stability and function is crucial for unravelling disease mechanisms and developing targeted therapies. The Critical Assessment of Genome Interpretation (CAGI) provides a valuable platform for benchmarking state-of-the-art computational methods in predicting the impact of disease-related mutations on protein thermodynamics. Here we report the performance of our comprehensive platform of structure-based computational approaches to evaluate mutations impacting protein structure and function on 3 challenges from CAGI6: Calmodulin, MAPK1 and MAPK3. Our stability predictors have achieved correlations of up to 0.74 and AUCs of 1 when predicting changes in ΔΔG for MAPK1 and MAPK3, respectively, and AUC of up to 0.75 in the Calmodulin challenge. Overall, our study highlights the importance of structure-based approaches in understanding the effects of missense mutations on protein thermodynamics. The results obtained from the CAGI6 challenges contribute to the ongoing efforts to enhance our understanding of disease mechanisms and facilitate the development of personalised medicine approaches.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.