利用米-拉曼-荧光激光雷达和微波辐射计的协同作用进行气溶胶吸湿性增长的创新研究

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, Fabrice Ducos
{"title":"利用米-拉曼-荧光激光雷达和微波辐射计的协同作用进行气溶胶吸湿性增长的创新研究","authors":"Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, Fabrice Ducos","doi":"10.5194/egusphere-2024-84","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> This study focuses on the characterization of aerosol hygroscopicity using remote sensing techniques. We employ a Mie-Raman-Fluorescence lidar (LILAS), developed at the ATOLL platform, Laboratoire d’Optique Atmosphérique, Lille, France, in combination with the RPG-HATPRO G5 microwave radiometer to enable continuous aerosol and water vapor monitoring. We identify hygroscopic growth cases when an aerosol layer exhibits an increase in both aerosol backscattering coefficient and relative humidity. By examining the aerosol layer type, determined through a clustering method, the fluorescence backscattering coefficient, which remains unaffected by the presence of water vapor, and the absolute humidity, we verify the homogeneity of the aerosol layer. Consequently, the change in the backscattering coefficient is solely attributed to water uptake. The Hänel theory is employed to describe the evolution of the backscattering coefficient with relative humidity and introduces a hygroscopic coefficient, γ, which depends on the aerosol type. C<span>ase studies conducted on July 29 and March 9, 2021 examine respectively an urban and a smoke aerosol layer</span>. For the urban case, γ is estimated as 0.47±0.03 at 532 nm; as for the smoke case, the estimation of γ is 0.5±0.3. These values align with those reported in the literature for urban and smoke particles. Our findings highlight the efficiency of the Mie-Raman-Fluorescence lidar and Microwave radiometer synergy in characterizing aerosol hygroscopicity. The results contribute to advance our understanding of atmospheric processes, aerosol-cloud interactions, and climate modeling.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"31 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative aerosol hygroscopic growth study from Mie-Raman-Fluorescence lidar and Microwave Radiometer synergy\",\"authors\":\"Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, Fabrice Ducos\",\"doi\":\"10.5194/egusphere-2024-84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> This study focuses on the characterization of aerosol hygroscopicity using remote sensing techniques. We employ a Mie-Raman-Fluorescence lidar (LILAS), developed at the ATOLL platform, Laboratoire d’Optique Atmosphérique, Lille, France, in combination with the RPG-HATPRO G5 microwave radiometer to enable continuous aerosol and water vapor monitoring. We identify hygroscopic growth cases when an aerosol layer exhibits an increase in both aerosol backscattering coefficient and relative humidity. By examining the aerosol layer type, determined through a clustering method, the fluorescence backscattering coefficient, which remains unaffected by the presence of water vapor, and the absolute humidity, we verify the homogeneity of the aerosol layer. Consequently, the change in the backscattering coefficient is solely attributed to water uptake. The Hänel theory is employed to describe the evolution of the backscattering coefficient with relative humidity and introduces a hygroscopic coefficient, γ, which depends on the aerosol type. C<span>ase studies conducted on July 29 and March 9, 2021 examine respectively an urban and a smoke aerosol layer</span>. For the urban case, γ is estimated as 0.47±0.03 at 532 nm; as for the smoke case, the estimation of γ is 0.5±0.3. These values align with those reported in the literature for urban and smoke particles. Our findings highlight the efficiency of the Mie-Raman-Fluorescence lidar and Microwave radiometer synergy in characterizing aerosol hygroscopicity. The results contribute to advance our understanding of atmospheric processes, aerosol-cloud interactions, and climate modeling.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-84\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-84","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究的重点是利用遥感技术确定气溶胶吸湿性的特征。我们利用法国里尔大气光学实验室 ATOLL 平台开发的米-拉曼-荧光激光雷达(LILAS),结合 RPG-HATPRO G5 微波辐射计,对气溶胶和水蒸气进行连续监测。当气溶胶层的气溶胶后向散射系数和相对湿度都增大时,我们就确定了吸湿增长的情况。通过检查气溶胶层类型(通过聚类方法确定)、荧光后向散射系数(不受水蒸气存在的影响)和绝对湿度,我们验证了气溶胶层的均匀性。因此,后向散射系数的变化完全归因于吸水。海纳尔理论用于描述后向散射系数随相对湿度的变化,并引入了吸湿系数γ,该系数取决于气溶胶类型。2021 年 7 月 29 日和 3 月 9 日进行的案例研究分别考察了城市气溶胶层和烟雾气溶胶层。对于城市情况,γ 在 532 纳米波长处的估计值为 0.47±0.03;对于烟雾情况,γ 的估计值为 0.5±0.3。这些数值与文献中报道的城市和烟雾颗粒的数值一致。我们的研究结果凸显了米-拉曼-荧光激光雷达和微波辐射计在表征气溶胶吸湿性方面的协同效应。这些结果有助于推进我们对大气过程、气溶胶-云相互作用和气候建模的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative aerosol hygroscopic growth study from Mie-Raman-Fluorescence lidar and Microwave Radiometer synergy
Abstract. This study focuses on the characterization of aerosol hygroscopicity using remote sensing techniques. We employ a Mie-Raman-Fluorescence lidar (LILAS), developed at the ATOLL platform, Laboratoire d’Optique Atmosphérique, Lille, France, in combination with the RPG-HATPRO G5 microwave radiometer to enable continuous aerosol and water vapor monitoring. We identify hygroscopic growth cases when an aerosol layer exhibits an increase in both aerosol backscattering coefficient and relative humidity. By examining the aerosol layer type, determined through a clustering method, the fluorescence backscattering coefficient, which remains unaffected by the presence of water vapor, and the absolute humidity, we verify the homogeneity of the aerosol layer. Consequently, the change in the backscattering coefficient is solely attributed to water uptake. The Hänel theory is employed to describe the evolution of the backscattering coefficient with relative humidity and introduces a hygroscopic coefficient, γ, which depends on the aerosol type. Case studies conducted on July 29 and March 9, 2021 examine respectively an urban and a smoke aerosol layer. For the urban case, γ is estimated as 0.47±0.03 at 532 nm; as for the smoke case, the estimation of γ is 0.5±0.3. These values align with those reported in the literature for urban and smoke particles. Our findings highlight the efficiency of the Mie-Raman-Fluorescence lidar and Microwave radiometer synergy in characterizing aerosol hygroscopicity. The results contribute to advance our understanding of atmospheric processes, aerosol-cloud interactions, and climate modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信