轨迹优化路径积分控制的最新进展:理论和算法概述

IF 7.3 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Muhammad Kazim, JunGee Hong, Min-Gyeom Kim, Kwang-Ki K. Kim
{"title":"轨迹优化路径积分控制的最新进展:理论和算法概述","authors":"Muhammad Kazim,&nbsp;JunGee Hong,&nbsp;Min-Gyeom Kim,&nbsp;Kwang-Ki K. Kim","doi":"10.1016/j.arcontrol.2023.100931","DOIUrl":null,"url":null,"abstract":"<div><p><span>This paper presents a tutorial overview of path integral (PI) approaches for stochastic optimal control and trajectory optimization. We concisely summarize the theoretical development of path integral control to compute a solution for stochastic optimal control and provide algorithmic descriptions of the cross-entropy (CE) method, an open-loop controller using the receding horizon scheme known as the model predictive path integral (MPPI), and a parameterized state feedback controller<span> based on the path integral control theory. We discuss policy search methods based on path integral control, efficient and stable sampling strategies, extensions to multi-agent decision-making, and MPPI for the trajectory optimization on manifolds. For tutorial demonstrations, some PI-based controllers are implemented in Python, MATLAB and ROS2/Gazebo simulations for trajectory optimization. The simulation frameworks and source codes are publicly available at </span></span><span>the github page</span><svg><path></path></svg>.</p></div>","PeriodicalId":50750,"journal":{"name":"Annual Reviews in Control","volume":"57 ","pages":"Article 100931"},"PeriodicalIF":7.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in path integral control for trajectory optimization: An overview in theoretical and algorithmic perspectives\",\"authors\":\"Muhammad Kazim,&nbsp;JunGee Hong,&nbsp;Min-Gyeom Kim,&nbsp;Kwang-Ki K. Kim\",\"doi\":\"10.1016/j.arcontrol.2023.100931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>This paper presents a tutorial overview of path integral (PI) approaches for stochastic optimal control and trajectory optimization. We concisely summarize the theoretical development of path integral control to compute a solution for stochastic optimal control and provide algorithmic descriptions of the cross-entropy (CE) method, an open-loop controller using the receding horizon scheme known as the model predictive path integral (MPPI), and a parameterized state feedback controller<span> based on the path integral control theory. We discuss policy search methods based on path integral control, efficient and stable sampling strategies, extensions to multi-agent decision-making, and MPPI for the trajectory optimization on manifolds. For tutorial demonstrations, some PI-based controllers are implemented in Python, MATLAB and ROS2/Gazebo simulations for trajectory optimization. The simulation frameworks and source codes are publicly available at </span></span><span>the github page</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":50750,\"journal\":{\"name\":\"Annual Reviews in Control\",\"volume\":\"57 \",\"pages\":\"Article 100931\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Reviews in Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367578823000950\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Reviews in Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367578823000950","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文概述了用于随机优化控制和轨迹优化的路径积分(PI)方法。我们简明扼要地总结了路径积分控制的理论发展,以计算随机最优控制的解,并提供了交叉熵(CE)方法、使用称为模型预测路径积分(MPPI)的后退视界方案的开环控制器以及基于路径积分控制理论的参数化状态反馈控制器的算法说明。我们讨论了基于路径积分控制的策略搜索方法、高效稳定的采样策略、多代理决策的扩展以及流形上轨迹优化的 MPPI。为了进行教程演示,在 Python、MATLAB 和 ROS2/Gazebo 仿真中实现了一些基于 PI 的控制器,用于轨迹优化。模拟框架和源代码可在 github 页面上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent advances in path integral control for trajectory optimization: An overview in theoretical and algorithmic perspectives

This paper presents a tutorial overview of path integral (PI) approaches for stochastic optimal control and trajectory optimization. We concisely summarize the theoretical development of path integral control to compute a solution for stochastic optimal control and provide algorithmic descriptions of the cross-entropy (CE) method, an open-loop controller using the receding horizon scheme known as the model predictive path integral (MPPI), and a parameterized state feedback controller based on the path integral control theory. We discuss policy search methods based on path integral control, efficient and stable sampling strategies, extensions to multi-agent decision-making, and MPPI for the trajectory optimization on manifolds. For tutorial demonstrations, some PI-based controllers are implemented in Python, MATLAB and ROS2/Gazebo simulations for trajectory optimization. The simulation frameworks and source codes are publicly available at the github page.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Reviews in Control
Annual Reviews in Control 工程技术-自动化与控制系统
CiteScore
19.00
自引率
2.10%
发文量
53
审稿时长
36 days
期刊介绍: The field of Control is changing very fast now with technology-driven “societal grand challenges” and with the deployment of new digital technologies. The aim of Annual Reviews in Control is to provide comprehensive and visionary views of the field of Control, by publishing the following types of review articles: Survey Article: Review papers on main methodologies or technical advances adding considerable technical value to the state of the art. Note that papers which purely rely on mechanistic searches and lack comprehensive analysis providing a clear contribution to the field will be rejected. Vision Article: Cutting-edge and emerging topics with visionary perspective on the future of the field or how it will bridge multiple disciplines, and Tutorial research Article: Fundamental guides for future studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信