可压缩纳维-斯托克斯方程弱解的新构造

IF 1.3 2区 数学 Q1 MATHEMATICS
Nilasis Chaudhuri, Piotr B. Mucha, Ewelina Zatorska
{"title":"可压缩纳维-斯托克斯方程弱解的新构造","authors":"Nilasis Chaudhuri, Piotr B. Mucha, Ewelina Zatorska","doi":"10.1007/s00208-023-02730-7","DOIUrl":null,"url":null,"abstract":"<p>We prove the existence of the weak solutions to the compressible Navier–Stokes system with barotropic pressure <span>\\(p(\\varrho )=\\varrho ^\\gamma \\)</span> for <span>\\(\\gamma \\ge 9/5\\)</span> in three space dimension. The novelty of the paper is the approximation scheme that instead of the classical regularization of the continuity equation (based on the viscosity approximation <span>\\(\\varepsilon \\Delta \\varrho \\)</span>) uses more direct truncation and regularisation of nonlinear terms and the pressure. This scheme is compatible with the Bresch–Jabin compactness criterion for the density. We revisit this criterion and prove, in full rigour, that it can be applied in our approximation at any level.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"144 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new construction of weak solutions to compressible Navier–Stokes equations\",\"authors\":\"Nilasis Chaudhuri, Piotr B. Mucha, Ewelina Zatorska\",\"doi\":\"10.1007/s00208-023-02730-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the existence of the weak solutions to the compressible Navier–Stokes system with barotropic pressure <span>\\\\(p(\\\\varrho )=\\\\varrho ^\\\\gamma \\\\)</span> for <span>\\\\(\\\\gamma \\\\ge 9/5\\\\)</span> in three space dimension. The novelty of the paper is the approximation scheme that instead of the classical regularization of the continuity equation (based on the viscosity approximation <span>\\\\(\\\\varepsilon \\\\Delta \\\\varrho \\\\)</span>) uses more direct truncation and regularisation of nonlinear terms and the pressure. This scheme is compatible with the Bresch–Jabin compactness criterion for the density. We revisit this criterion and prove, in full rigour, that it can be applied in our approximation at any level.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-023-02730-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-023-02730-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了可压缩纳维-斯托克斯(Navier-Stokes)系统的弱解的存在性,该系统在三维空间中具有气压(p(\varrho )=\varrho ^\gamma\) for \(\gamma \ge 9/5\)。本文的新颖之处在于它的近似方案,即不使用连续性方程的经典正则化(基于粘度近似 \(\varepsilon \Delta \varrho \)),而是使用更直接的截断和正则化非线性项和压力。该方案与密度的布列希-贾宾紧凑性准则相兼容。我们重新审视了这一准则,并完全严格地证明了它可以应用于我们的任何层次的近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new construction of weak solutions to compressible Navier–Stokes equations

We prove the existence of the weak solutions to the compressible Navier–Stokes system with barotropic pressure \(p(\varrho )=\varrho ^\gamma \) for \(\gamma \ge 9/5\) in three space dimension. The novelty of the paper is the approximation scheme that instead of the classical regularization of the continuity equation (based on the viscosity approximation \(\varepsilon \Delta \varrho \)) uses more direct truncation and regularisation of nonlinear terms and the pressure. This scheme is compatible with the Bresch–Jabin compactness criterion for the density. We revisit this criterion and prove, in full rigour, that it can be applied in our approximation at any level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信