用于历史文献图像二值化的稀释多重影视觉注意力 U-Net

IF 3.4 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Nikolaos Detsikas, Nikolaos Mitianoudis, Nikolaos Papamarkos
{"title":"用于历史文献图像二值化的稀释多重影视觉注意力 U-Net","authors":"Nikolaos Detsikas,&nbsp;Nikolaos Mitianoudis,&nbsp;Nikolaos Papamarkos","doi":"10.1016/j.image.2024.117102","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The task of binarization of historical </span>document images<span> has been in the forefront of image processing research, during the digital transition of libraries. The process of storing and transcribing valuable historical printed or handwritten material can salvage world cultural heritage and make it available online without physical attendance. The task of binarization can be viewed as a pre-processing step that attempts to separate the printed/handwritten characters in the image from possible noise and stains, which will assist in the </span></span>Optical Character Recognition<span><span> (OCR) process. Many approaches have been proposed before, including deep learning based approaches. In this article, we propose a U-Net style deep learning architecture that incorporates many other developments of deep learning, including residual connections, multi-resolution connections, visual attention blocks and dilated convolution blocks for upsampling. The novelties in the proposed DMVAnet lie in the use of these elements in combination in a novel U-Net style architecture and the application of DMVAnet in image binarization for the first time. In addition, the proposed DMVAnet is a very computationally lightweight network that performs very close or even better than the state-of-the-art approaches with a fraction of the network size and parameters. Finally, it can be used on platforms with restricted processing power and system resources, such as </span>mobile devices and through scaling can result in inference times that allow for real-time applications.</span></p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"122 ","pages":"Article 117102"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Dilated MultiRes Visual Attention U-Net for historical document image binarization\",\"authors\":\"Nikolaos Detsikas,&nbsp;Nikolaos Mitianoudis,&nbsp;Nikolaos Papamarkos\",\"doi\":\"10.1016/j.image.2024.117102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span>The task of binarization of historical </span>document images<span> has been in the forefront of image processing research, during the digital transition of libraries. The process of storing and transcribing valuable historical printed or handwritten material can salvage world cultural heritage and make it available online without physical attendance. The task of binarization can be viewed as a pre-processing step that attempts to separate the printed/handwritten characters in the image from possible noise and stains, which will assist in the </span></span>Optical Character Recognition<span><span> (OCR) process. Many approaches have been proposed before, including deep learning based approaches. In this article, we propose a U-Net style deep learning architecture that incorporates many other developments of deep learning, including residual connections, multi-resolution connections, visual attention blocks and dilated convolution blocks for upsampling. The novelties in the proposed DMVAnet lie in the use of these elements in combination in a novel U-Net style architecture and the application of DMVAnet in image binarization for the first time. In addition, the proposed DMVAnet is a very computationally lightweight network that performs very close or even better than the state-of-the-art approaches with a fraction of the network size and parameters. Finally, it can be used on platforms with restricted processing power and system resources, such as </span>mobile devices and through scaling can result in inference times that allow for real-time applications.</span></p></div>\",\"PeriodicalId\":49521,\"journal\":{\"name\":\"Signal Processing-Image Communication\",\"volume\":\"122 \",\"pages\":\"Article 117102\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing-Image Communication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923596524000031\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000031","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在图书馆数字化转型期间,历史文献图像的二值化任务一直处于图像处理研究的前沿。对珍贵的历史印刷或手写资料进行存储和转录的过程可以抢救世界文化遗产,并使其无需实物即可在线查阅。二值化任务可被视为一个预处理步骤,它试图将图像中的印刷/手写字符与可能存在的噪音和污点分离开来,这将有助于光学字符识别(OCR)过程。之前已经提出了许多方法,包括基于深度学习的方法。在本文中,我们提出了一种 U-Net 风格的深度学习架构,它融合了深度学习的许多其他发展,包括残差连接、多分辨率连接、视觉注意力块和用于上采样的扩张卷积块。拟议的 DMVAnet 的新颖之处在于将这些元素结合到一个新颖的 U-Net 式架构中,并首次将 DMVAnet 应用于图像二值化。此外,所提出的 DMVAnet 是一种计算量非常小的网络,其性能非常接近甚至优于最先进的方法,而网络规模和参数仅为后者的一小部分。最后,它可以在处理能力和系统资源有限的平台上使用,如移动设备,并且通过缩放可以实现实时应用的推理时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Dilated MultiRes Visual Attention U-Net for historical document image binarization

The task of binarization of historical document images has been in the forefront of image processing research, during the digital transition of libraries. The process of storing and transcribing valuable historical printed or handwritten material can salvage world cultural heritage and make it available online without physical attendance. The task of binarization can be viewed as a pre-processing step that attempts to separate the printed/handwritten characters in the image from possible noise and stains, which will assist in the Optical Character Recognition (OCR) process. Many approaches have been proposed before, including deep learning based approaches. In this article, we propose a U-Net style deep learning architecture that incorporates many other developments of deep learning, including residual connections, multi-resolution connections, visual attention blocks and dilated convolution blocks for upsampling. The novelties in the proposed DMVAnet lie in the use of these elements in combination in a novel U-Net style architecture and the application of DMVAnet in image binarization for the first time. In addition, the proposed DMVAnet is a very computationally lightweight network that performs very close or even better than the state-of-the-art approaches with a fraction of the network size and parameters. Finally, it can be used on platforms with restricted processing power and system resources, such as mobile devices and through scaling can result in inference times that allow for real-time applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing-Image Communication
Signal Processing-Image Communication 工程技术-工程:电子与电气
CiteScore
8.40
自引率
2.90%
发文量
138
审稿时长
5.2 months
期刊介绍: Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following: To present a forum for the advancement of theory and practice of image communication. To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems. To contribute to a rapid information exchange between the industrial and academic environments. The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world. Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments. Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信