原 p 群的高维代数纤维

Dessislava H. Kochloukova
{"title":"原 p 群的高维代数纤维","authors":"Dessislava H. Kochloukova","doi":"10.4153/s0008414x23000895","DOIUrl":null,"url":null,"abstract":"<p>We prove some conditions for higher-dimensional algebraic fibering of pro-<span>p</span> group extensions, and we establish corollaries about incoherence of pro-<span>p</span> groups. In particular, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$1 \\to K \\to G \\to \\Gamma \\to 1$</span></span></img></span></span> is a short exact sequence of pro-<span>p</span> groups, such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\Gamma $</span></span></img></span></span> contains a finitely generated, non-abelian, free pro-<span>p</span> subgroup, <span>K</span> a finitely presented pro-<span>p</span> group with <span>N</span> a normal pro-<span>p</span> subgroup of <span>K</span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K/ N \\simeq \\mathbb {Z}_p$</span></span></img></span></span> and <span>N</span> not finitely generated as a pro-<span>p</span> group, then <span>G</span> is incoherent (in the category of pro-<span>p</span> groups). Furthermore, we show that if <span>K</span> is a finitely generated, free pro-<span>p</span> group with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$d(K) \\geq 2$</span></span></img></span></span>, then either <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Aut}_0(K)$</span></span></img></span></span> is incoherent (in the category of pro-<span>p</span> groups) or there is a finitely presented pro-<span>p</span> group, without non-procyclic free pro-<span>p</span> subgroups, that has a metabelian pro-<span>p</span> quotient that is not finitely presented, i.e., a pro-<span>p</span> version of a result of Bieri–Strebel does not hold.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher dimensional algebraic fiberings for pro-p groups\",\"authors\":\"Dessislava H. Kochloukova\",\"doi\":\"10.4153/s0008414x23000895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove some conditions for higher-dimensional algebraic fibering of pro-<span>p</span> group extensions, and we establish corollaries about incoherence of pro-<span>p</span> groups. In particular, if <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$1 \\\\to K \\\\to G \\\\to \\\\Gamma \\\\to 1$</span></span></img></span></span> is a short exact sequence of pro-<span>p</span> groups, such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\Gamma $</span></span></img></span></span> contains a finitely generated, non-abelian, free pro-<span>p</span> subgroup, <span>K</span> a finitely presented pro-<span>p</span> group with <span>N</span> a normal pro-<span>p</span> subgroup of <span>K</span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K/ N \\\\simeq \\\\mathbb {Z}_p$</span></span></img></span></span> and <span>N</span> not finitely generated as a pro-<span>p</span> group, then <span>G</span> is incoherent (in the category of pro-<span>p</span> groups). Furthermore, we show that if <span>K</span> is a finitely generated, free pro-<span>p</span> group with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d(K) \\\\geq 2$</span></span></img></span></span>, then either <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240114040832101-0205:S0008414X23000895:S0008414X23000895_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathrm{Aut}_0(K)$</span></span></img></span></span> is incoherent (in the category of pro-<span>p</span> groups) or there is a finitely presented pro-<span>p</span> group, without non-procyclic free pro-<span>p</span> subgroups, that has a metabelian pro-<span>p</span> quotient that is not finitely presented, i.e., a pro-<span>p</span> version of a result of Bieri–Strebel does not hold.</p>\",\"PeriodicalId\":501820,\"journal\":{\"name\":\"Canadian Journal of Mathematics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4153/s0008414x23000895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x23000895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了原 p 群扩展的高维代数纤维化的一些条件,并建立了关于原 p 群不一致性的推论。特别是,如果 $1 \to K \to G \to \Gamma \to 1$ 是一个短的精确序列的原 p 群,那么 $\Gamma $ 包含一个有限生成的、非阿贝尔的、自由的原 p 子群、K 是有限呈现的原 p 群,N 是 K 的正常原 p 子群,使得 $K/ N \simeq \mathbb {Z}_p$ 而 N 不是有限生成的原 p 群,那么 G 是不连贯的(在原 p 群范畴中)。此外,我们还证明了如果 K 是一个有限生成的自由原 p 群,且 $d(K) \geq 2$,那么要么 $\mathrm{Aut}_0(K)$ 是不连贯的(在原 p 群类别中),要么存在一个有限呈现的原 p 群,且不存在非循环的自由原 p 子群,它的元原 p 商不是有限呈现的,也就是说,Bieri-Strebel 结果的原 p 版本不成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher dimensional algebraic fiberings for pro-p groups

We prove some conditions for higher-dimensional algebraic fibering of pro-p group extensions, and we establish corollaries about incoherence of pro-p groups. In particular, if $1 \to K \to G \to \Gamma \to 1$ is a short exact sequence of pro-p groups, such that $\Gamma $ contains a finitely generated, non-abelian, free pro-p subgroup, K a finitely presented pro-p group with N a normal pro-p subgroup of K such that $K/ N \simeq \mathbb {Z}_p$ and N not finitely generated as a pro-p group, then G is incoherent (in the category of pro-p groups). Furthermore, we show that if K is a finitely generated, free pro-p group with $d(K) \geq 2$, then either $\mathrm{Aut}_0(K)$ is incoherent (in the category of pro-p groups) or there is a finitely presented pro-p group, without non-procyclic free pro-p subgroups, that has a metabelian pro-p quotient that is not finitely presented, i.e., a pro-p version of a result of Bieri–Strebel does not hold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信