研究置换油系统的乳化能力对其化学淹没回收的影响

IF 1.2 4区 工程技术 Q4 CHEMISTRY, APPLIED
Biao Wang, Yu Su, Leilei Zhang, Jingwei Yang, Gen Li, Keliang Wang
{"title":"研究置换油系统的乳化能力对其化学淹没回收的影响","authors":"Biao Wang, Yu Su, Leilei Zhang, Jingwei Yang, Gen Li, Keliang Wang","doi":"10.1515/tsd-2023-2546","DOIUrl":null,"url":null,"abstract":"In this paper, in order to study the effect of emulsification on the oil displacement of the system, several polymer, surfactant/polymer (S/P) and alkali/surfactant/polymer (A/S/P) systems were prepared for experiments. Firstly, the interfacial tension of each system was investigated. After the emulsion was prepared, the droplet size was observed by microscope and the intensity of the backscattered light during the destabilisation process of the emulsion was tested with the stability analyser. The TSI value was calculated to evaluate the stability of the emulsion. Finally, the Berea core displacement experiment (chemicals are used to displace oil from the core) was carried out to test the ability to enhance the oil recovery. The experimental results show that the emulsion formed by the A/S/P system with the simulation oil has the best stability. The chemical displacement recovery is the highest, which is 32.15 %. The emulsion stability of the S/P system is second, and the chemical displacement recoveries are 17.03 % and 20.76 %, respectively. The polymer system has no interfacial activity, does not form an emulsion, and has the lowest chemical displacement recovery of 8.02 %. This shows that the deeper the degree of emulsification of the system and the more stable the emulsion, the better the oil displacement effect of the oil displacement system.","PeriodicalId":22258,"journal":{"name":"Tenside Surfactants Detergents","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the influence of emulsification ability of oil displacement system on its chemical flooding recovery\",\"authors\":\"Biao Wang, Yu Su, Leilei Zhang, Jingwei Yang, Gen Li, Keliang Wang\",\"doi\":\"10.1515/tsd-2023-2546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, in order to study the effect of emulsification on the oil displacement of the system, several polymer, surfactant/polymer (S/P) and alkali/surfactant/polymer (A/S/P) systems were prepared for experiments. Firstly, the interfacial tension of each system was investigated. After the emulsion was prepared, the droplet size was observed by microscope and the intensity of the backscattered light during the destabilisation process of the emulsion was tested with the stability analyser. The TSI value was calculated to evaluate the stability of the emulsion. Finally, the Berea core displacement experiment (chemicals are used to displace oil from the core) was carried out to test the ability to enhance the oil recovery. The experimental results show that the emulsion formed by the A/S/P system with the simulation oil has the best stability. The chemical displacement recovery is the highest, which is 32.15 %. The emulsion stability of the S/P system is second, and the chemical displacement recoveries are 17.03 % and 20.76 %, respectively. The polymer system has no interfacial activity, does not form an emulsion, and has the lowest chemical displacement recovery of 8.02 %. This shows that the deeper the degree of emulsification of the system and the more stable the emulsion, the better the oil displacement effect of the oil displacement system.\",\"PeriodicalId\":22258,\"journal\":{\"name\":\"Tenside Surfactants Detergents\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tenside Surfactants Detergents\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/tsd-2023-2546\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenside Surfactants Detergents","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tsd-2023-2546","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文为了研究乳化对体系油置换的影响,制备了几种聚合物、表面活性剂/聚合物(S/P)和碱/表面活性剂/聚合物(A/S/P)体系进行实验。首先,研究了各体系的界面张力。制备乳液后,用显微镜观察液滴大小,并用稳定性分析仪测试乳液失稳过程中的背向散射光强度。通过计算 TSI 值来评估乳液的稳定性。最后,进行了贝里亚岩心置换实验(使用化学试剂置换岩心中的石油),以测试提高石油采收率的能力。实验结果表明,A/S/P 系统与模拟油形成的乳状液稳定性最好。化学置换采收率最高,为 32.15%。S/P 系统的乳状液稳定性次之,化学置换回收率分别为 17.03 % 和 20.76 %。聚合物体系没有界面活性,不能形成乳液,化学位移回收率最低,为 8.02 %。这表明,体系的乳化程度越深,乳化液越稳定,油置换体系的油置换效果就越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the influence of emulsification ability of oil displacement system on its chemical flooding recovery
In this paper, in order to study the effect of emulsification on the oil displacement of the system, several polymer, surfactant/polymer (S/P) and alkali/surfactant/polymer (A/S/P) systems were prepared for experiments. Firstly, the interfacial tension of each system was investigated. After the emulsion was prepared, the droplet size was observed by microscope and the intensity of the backscattered light during the destabilisation process of the emulsion was tested with the stability analyser. The TSI value was calculated to evaluate the stability of the emulsion. Finally, the Berea core displacement experiment (chemicals are used to displace oil from the core) was carried out to test the ability to enhance the oil recovery. The experimental results show that the emulsion formed by the A/S/P system with the simulation oil has the best stability. The chemical displacement recovery is the highest, which is 32.15 %. The emulsion stability of the S/P system is second, and the chemical displacement recoveries are 17.03 % and 20.76 %, respectively. The polymer system has no interfacial activity, does not form an emulsion, and has the lowest chemical displacement recovery of 8.02 %. This shows that the deeper the degree of emulsification of the system and the more stable the emulsion, the better the oil displacement effect of the oil displacement system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tenside Surfactants Detergents
Tenside Surfactants Detergents 工程技术-工程:化工
CiteScore
1.90
自引率
10.00%
发文量
57
审稿时长
3.8 months
期刊介绍: Tenside Surfactants Detergents offers the most recent results of research and development in all fields of surfactant chemistry, such as: synthesis, analysis, physicochemical properties, new types of surfactants, progress in production processes, application-related problems and environmental behavior. Since 1964 Tenside Surfactants Detergents offers strictly peer-reviewed, high-quality articles by renowned specialists around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信