癌症临床试验资格标准文本分类》。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Yumeng Yang, Soumya Jayaraj, Ethan Ludmir, Kirk Roberts
{"title":"癌症临床试验资格标准文本分类》。","authors":"Yumeng Yang, Soumya Jayaraj, Ethan Ludmir, Kirk Roberts","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic identification of clinical trials for which a patient is eligible is complicated by the fact that trial eligibility are stated in natural language. A potential solution to this problem is to employ text classification methods for common types of eligibility criteria. In this study, we focus on seven common exclusion criteria in cancer trials: prior malignancy, human immunodeficiency virus, hepatitis B, hepatitis C, psychiatric illness, drug/substance abuse, and autoimmune illness. Our dataset consists of 764 phase III cancer trials with these exclusions annotated at the trial level. We experiment with common transformer models as well as a new pre-trained clinical trial BERT model. Our results demonstrate the feasibility of automatically classifying common exclusion criteria. Additionally, we demonstrate the value of a pre-trained language model specifically for clinical trials, which yield the highest average performance across all criteria.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"1304-1313"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785908/pdf/","citationCount":"0","resultStr":"{\"title\":\"Text Classification of Cancer Clinical Trial Eligibility Criteria.\",\"authors\":\"Yumeng Yang, Soumya Jayaraj, Ethan Ludmir, Kirk Roberts\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic identification of clinical trials for which a patient is eligible is complicated by the fact that trial eligibility are stated in natural language. A potential solution to this problem is to employ text classification methods for common types of eligibility criteria. In this study, we focus on seven common exclusion criteria in cancer trials: prior malignancy, human immunodeficiency virus, hepatitis B, hepatitis C, psychiatric illness, drug/substance abuse, and autoimmune illness. Our dataset consists of 764 phase III cancer trials with these exclusions annotated at the trial level. We experiment with common transformer models as well as a new pre-trained clinical trial BERT model. Our results demonstrate the feasibility of automatically classifying common exclusion criteria. Additionally, we demonstrate the value of a pre-trained language model specifically for clinical trials, which yield the highest average performance across all criteria.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"1304-1313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785908/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动识别患者符合条件的临床试验非常复杂,因为试验资格是用自然语言表述的。解决这一问题的潜在方法是针对常见类型的资格标准采用文本分类方法。在本研究中,我们重点关注癌症试验中常见的七种排除标准:既往恶性肿瘤、人类免疫缺陷病毒、乙型肝炎、丙型肝炎、精神疾病、药物/物质滥用和自身免疫性疾病。我们的数据集由 764 项 III 期癌症试验组成,这些试验在试验层面上标注了这些排除项。我们使用常见的转换器模型以及新的预训练临床试验 BERT 模型进行了实验。我们的结果证明了自动分类常见排除标准的可行性。此外,我们还证明了专门针对临床试验的预训练语言模型的价值,该模型在所有标准中的平均性能最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text Classification of Cancer Clinical Trial Eligibility Criteria.

Automatic identification of clinical trials for which a patient is eligible is complicated by the fact that trial eligibility are stated in natural language. A potential solution to this problem is to employ text classification methods for common types of eligibility criteria. In this study, we focus on seven common exclusion criteria in cancer trials: prior malignancy, human immunodeficiency virus, hepatitis B, hepatitis C, psychiatric illness, drug/substance abuse, and autoimmune illness. Our dataset consists of 764 phase III cancer trials with these exclusions annotated at the trial level. We experiment with common transformer models as well as a new pre-trained clinical trial BERT model. Our results demonstrate the feasibility of automatically classifying common exclusion criteria. Additionally, we demonstrate the value of a pre-trained language model specifically for clinical trials, which yield the highest average performance across all criteria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信