利用未标记的临床数据提高疑似急性冠状动脉综合征风险分层模型的性能。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Yutong Wu, David Conlan, Siegfried Perez, Anthony Nguyen
{"title":"利用未标记的临床数据提高疑似急性冠状动脉综合征风险分层模型的性能。","authors":"Yutong Wu, David Conlan, Siegfried Perez, Anthony Nguyen","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of deep learning models in the health domain is desperately limited by the scarcity of labeled data, especially for specific clinical-domain tasks. Conversely, there are vastly available clinical unlabeled data waiting to be exploited to improve deep learning models where their training labeled data are limited. This paper investigates the use of task-specific unlabeled data to boost the performance of classification models for the risk stratification of suspected acute coronary syndrome. By leveraging large numbers of unlabeled clinical notes in task-adaptive language model pretraining, valuable prior task-specific knowledge can be attained. Based on such pretrained models, task-specific fine-tuning with limited labeled data produces better performances. Extensive experiments demonstrate that the pretrained task-specific language models using task-specific unlabeled data can significantly improve the performance of the downstream models for specific classification tasks.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"744-753"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785873/pdf/","citationCount":"0","resultStr":"{\"title\":\"Leveraging Unlabeled Clinical Data to Boost Performance of Risk Stratification Models for Suspected Acute Coronary Syndrome.\",\"authors\":\"Yutong Wu, David Conlan, Siegfried Perez, Anthony Nguyen\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance of deep learning models in the health domain is desperately limited by the scarcity of labeled data, especially for specific clinical-domain tasks. Conversely, there are vastly available clinical unlabeled data waiting to be exploited to improve deep learning models where their training labeled data are limited. This paper investigates the use of task-specific unlabeled data to boost the performance of classification models for the risk stratification of suspected acute coronary syndrome. By leveraging large numbers of unlabeled clinical notes in task-adaptive language model pretraining, valuable prior task-specific knowledge can be attained. Based on such pretrained models, task-specific fine-tuning with limited labeled data produces better performances. Extensive experiments demonstrate that the pretrained task-specific language models using task-specific unlabeled data can significantly improve the performance of the downstream models for specific classification tasks.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"744-753\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习模型在健康领域的表现因标注数据的稀缺而受到极大限制,特别是在特定的临床领域任务中。相反,在深度学习模型的训练标注数据有限的情况下,有大量可用的临床非标注数据等待着我们去利用,以改进深度学习模型。本文研究了如何利用特定任务的非标记数据来提高疑似急性冠状动脉综合征风险分层分类模型的性能。通过在任务自适应语言模型预训练中利用大量未标记的临床笔记,可以获得有价值的任务特定先验知识。在这种预训练模型的基础上,利用有限的标注数据对特定任务进行微调,可以产生更好的性能。大量实验证明,使用特定任务的非标记数据预训练特定任务语言模型,可以显著提高下游模型在特定分类任务中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Unlabeled Clinical Data to Boost Performance of Risk Stratification Models for Suspected Acute Coronary Syndrome.

The performance of deep learning models in the health domain is desperately limited by the scarcity of labeled data, especially for specific clinical-domain tasks. Conversely, there are vastly available clinical unlabeled data waiting to be exploited to improve deep learning models where their training labeled data are limited. This paper investigates the use of task-specific unlabeled data to boost the performance of classification models for the risk stratification of suspected acute coronary syndrome. By leveraging large numbers of unlabeled clinical notes in task-adaptive language model pretraining, valuable prior task-specific knowledge can be attained. Based on such pretrained models, task-specific fine-tuning with limited labeled data produces better performances. Extensive experiments demonstrate that the pretrained task-specific language models using task-specific unlabeled data can significantly improve the performance of the downstream models for specific classification tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信