游戏化能否减轻移动医疗应用中自我报告的负担?利用智能手表数据的机器学习估算认知负荷的可行性研究。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Michal K Grzeszczyk, Paulina Adamczyk, Sylwia Marek, Ryszard Pręcikowski, Maciej Kuś, M Patrycja Lelujko, Rosmary Blanco, Tomasz Trzciński, Arkadiusz Sitek, Maciej Malawski, Aneta Lisowska
{"title":"游戏化能否减轻移动医疗应用中自我报告的负担?利用智能手表数据的机器学习估算认知负荷的可行性研究。","authors":"Michal K Grzeszczyk, Paulina Adamczyk, Sylwia Marek, Ryszard Pręcikowski, Maciej Kuś, M Patrycja Lelujko, Rosmary Blanco, Tomasz Trzciński, Arkadiusz Sitek, Maciej Malawski, Aneta Lisowska","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement. We conduct a study to explore the impact of gamification on self-reporting. Our approach involves the creation of a system to assess cognitive load (CL) through the analysis of photoplethysmography (PPG) signals. The data from 11 participants is utilized to train a machine learning model to detect CL. Subsequently, we create two versions of surveys: a gamified and a traditional one. We estimate the CL experienced by other participants (13) while completing surveys. We find that CL detector performance can be enhanced via pre-training on stress detection tasks. For 10 out of 13 participants, a personalized CL detector can achieve an F1 score above 0.7. We find no difference between the gamified and non-gamified surveys in terms of CL but participants prefer the gamified version.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"389-396"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785949/pdf/","citationCount":"0","resultStr":"{\"title\":\"Can gamification reduce the burden of self-reporting in mHealth applications? A feasibility study using machine learning from smartwatch data to estimate cognitive load.\",\"authors\":\"Michal K Grzeszczyk, Paulina Adamczyk, Sylwia Marek, Ryszard Pręcikowski, Maciej Kuś, M Patrycja Lelujko, Rosmary Blanco, Tomasz Trzciński, Arkadiusz Sitek, Maciej Malawski, Aneta Lisowska\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement. We conduct a study to explore the impact of gamification on self-reporting. Our approach involves the creation of a system to assess cognitive load (CL) through the analysis of photoplethysmography (PPG) signals. The data from 11 participants is utilized to train a machine learning model to detect CL. Subsequently, we create two versions of surveys: a gamified and a traditional one. We estimate the CL experienced by other participants (13) while completing surveys. We find that CL detector performance can be enhanced via pre-training on stress detection tasks. For 10 out of 13 participants, a personalized CL detector can achieve an F1 score above 0.7. We find no difference between the gamified and non-gamified surveys in terms of CL but participants prefer the gamified version.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"389-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785949/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字治疗的有效性可以通过要求患者通过应用软件自我报告病情来衡量,然而,这可能会让患者难以承受,并导致脱离治疗。我们开展了一项研究,探索游戏化对自我报告的影响。我们的方法包括创建一个系统,通过分析光电血压计(PPG)信号来评估认知负荷(CL)。我们利用 11 名参与者的数据来训练一个机器学习模型,以检测认知负荷。随后,我们制作了两个版本的调查问卷:一个游戏化版本和一个传统版本。我们估算了其他参与者(13 人)在完成调查时经历的 CL。我们发现,通过对压力检测任务进行预训练,可以提高 CL 检测器的性能。对于 13 位参与者中的 10 位来说,个性化 CL 检测器的 F1 分数可以达到 0.7 以上。我们发现游戏化和非游戏化调查在CL方面没有区别,但参与者更喜欢游戏化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Can gamification reduce the burden of self-reporting in mHealth applications? A feasibility study using machine learning from smartwatch data to estimate cognitive load.

The effectiveness of digital treatments can be measured by requiring patients to self-report their state through applications, however, it can be overwhelming and causes disengagement. We conduct a study to explore the impact of gamification on self-reporting. Our approach involves the creation of a system to assess cognitive load (CL) through the analysis of photoplethysmography (PPG) signals. The data from 11 participants is utilized to train a machine learning model to detect CL. Subsequently, we create two versions of surveys: a gamified and a traditional one. We estimate the CL experienced by other participants (13) while completing surveys. We find that CL detector performance can be enhanced via pre-training on stress detection tasks. For 10 out of 13 participants, a personalized CL detector can achieve an F1 score above 0.7. We find no difference between the gamified and non-gamified surveys in terms of CL but participants prefer the gamified version.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信