利用自然语言处理技术,对电子健康记录数据进行不定期观察,纵向研究无家可归问题。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Alec B Chapman, Daniel O Scharfstein, Ann Elizabeth Montgomery, Thomas Byrne, Ying Suo, Atim Effiong, Tania Velasquez, Warren Pettey, Richard E Nelson
{"title":"利用自然语言处理技术,对电子健康记录数据进行不定期观察,纵向研究无家可归问题。","authors":"Alec B Chapman, Daniel O Scharfstein, Ann Elizabeth Montgomery, Thomas Byrne, Ying Suo, Atim Effiong, Tania Velasquez, Warren Pettey, Richard E Nelson","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Electronic Health Record (EHR) contains information about social determinants of health (SDoH) such as homelessness. Much of this information is contained in clinical notes and can be extracted using natural language processing (NLP). This data can provide valuable information for researchers and policymakers studying long-term housing outcomes for individuals with a history of homelessness. However, studying homelessness longitudinally in the EHR is challenging due to irregular observation times. In this work, we applied an NLP system to extract housing status for a cohort of patients in the US Department of Veterans Affairs (VA) over a three-year period. We then applied inverse intensity weighting to adjust for the irregularity of observations, which was used generalized estimating equations to estimate the probability of unstable housing each day after entering a VA housing assistance program. Our methods generate unique insights into the long-term outcomes of individuals with a history of homelessness and demonstrate the potential for using EHR data for research and policymaking.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"894-903"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785905/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using natural language processing to study homelessness longitudinally with electronic health record data subject to irregular observations.\",\"authors\":\"Alec B Chapman, Daniel O Scharfstein, Ann Elizabeth Montgomery, Thomas Byrne, Ying Suo, Atim Effiong, Tania Velasquez, Warren Pettey, Richard E Nelson\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Electronic Health Record (EHR) contains information about social determinants of health (SDoH) such as homelessness. Much of this information is contained in clinical notes and can be extracted using natural language processing (NLP). This data can provide valuable information for researchers and policymakers studying long-term housing outcomes for individuals with a history of homelessness. However, studying homelessness longitudinally in the EHR is challenging due to irregular observation times. In this work, we applied an NLP system to extract housing status for a cohort of patients in the US Department of Veterans Affairs (VA) over a three-year period. We then applied inverse intensity weighting to adjust for the irregularity of observations, which was used generalized estimating equations to estimate the probability of unstable housing each day after entering a VA housing assistance program. Our methods generate unique insights into the long-term outcomes of individuals with a history of homelessness and demonstrate the potential for using EHR data for research and policymaking.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"894-903\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785905/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录 (EHR) 包含有关健康的社会决定因素 (SDoH) 的信息,如无家可归。这些信息大多包含在临床笔记中,可以使用自然语言处理 (NLP) 提取。这些数据可以为研究人员和政策制定者提供有价值的信息,帮助他们研究有无家可归史的个人的长期住房结果。然而,由于观察时间不规则,在电子病历中纵向研究无家可归问题具有挑战性。在这项工作中,我们应用 NLP 系统提取了美国退伍军人事务部(VA)一组患者三年内的住房状况。然后,我们应用反强度加权法来调整观察结果的不规则性,并使用广义估计方程来估计进入退伍军人事务部住房援助计划后每天住房不稳定的概率。我们的方法对有无家可归史的个人的长期结果产生了独特的见解,并证明了使用电子病历数据进行研究和决策的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using natural language processing to study homelessness longitudinally with electronic health record data subject to irregular observations.

The Electronic Health Record (EHR) contains information about social determinants of health (SDoH) such as homelessness. Much of this information is contained in clinical notes and can be extracted using natural language processing (NLP). This data can provide valuable information for researchers and policymakers studying long-term housing outcomes for individuals with a history of homelessness. However, studying homelessness longitudinally in the EHR is challenging due to irregular observation times. In this work, we applied an NLP system to extract housing status for a cohort of patients in the US Department of Veterans Affairs (VA) over a three-year period. We then applied inverse intensity weighting to adjust for the irregularity of observations, which was used generalized estimating equations to estimate the probability of unstable housing each day after entering a VA housing assistance program. Our methods generate unique insights into the long-term outcomes of individuals with a history of homelessness and demonstrate the potential for using EHR data for research and policymaking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信