通过蛋白质乙酰化抑制变异链球菌的生长和生物膜的形成。

IF 2.8 3区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Molecular Oral Microbiology Pub Date : 2024-10-01 Epub Date: 2024-01-15 DOI:10.1111/omi.12452
Yongwang Lin, Qizhao Ma, Jiangchuan Yan, Tao Gong, Jun Huang, Jiamin Chen, Jing Li, Yang Qiu, Xiaowan Wang, Zixue Lei, Jumei Zeng, Lingyun Wang, Xuedong Zhou, Yuqing Li
{"title":"通过蛋白质乙酰化抑制变异链球菌的生长和生物膜的形成。","authors":"Yongwang Lin, Qizhao Ma, Jiangchuan Yan, Tao Gong, Jun Huang, Jiamin Chen, Jing Li, Yang Qiu, Xiaowan Wang, Zixue Lei, Jumei Zeng, Lingyun Wang, Xuedong Zhou, Yuqing Li","doi":"10.1111/omi.12452","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.</p>","PeriodicalId":18815,"journal":{"name":"Molecular Oral Microbiology","volume":" ","pages":"334-343"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Streptococcus mutans growth and biofilm formation through protein acetylation.\",\"authors\":\"Yongwang Lin, Qizhao Ma, Jiangchuan Yan, Tao Gong, Jun Huang, Jiamin Chen, Jing Li, Yang Qiu, Xiaowan Wang, Zixue Lei, Jumei Zeng, Lingyun Wang, Xuedong Zhou, Yuqing Li\",\"doi\":\"10.1111/omi.12452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.</p>\",\"PeriodicalId\":18815,\"journal\":{\"name\":\"Molecular Oral Microbiology\",\"volume\":\" \",\"pages\":\"334-343\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oral Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/omi.12452\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oral Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/omi.12452","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

许多细胞过程都受到细胞代谢状态的调控,其中一种调控机制涉及赖氨酸乙酰化。赖氨酸乙酰化已被证明在变异链球菌(一种主要致龋细菌)的毒力中发挥重要作用。变异链球菌的葡糖基转移酶(Gtfs)负责合成胞外多糖(EPS)并促进生物膜的形成。乙酰水杨酸(ASA)是最常见的非甾体抗炎药物之一,它能通过非酶促反乙酰化反应使蛋白质乙酰化。在此,我们研究了ASA对突变酵母菌的抑制作用。经观察发现,ASA 处理可阻碍变异单胞菌的生长,从而减少水不溶性 EPS 的产生和生物膜的形成。此外,ASA 还降低了 Gtfs 的酶活性,同时提高了蛋白质的乙酰化水平。使用大鼠龋齿模型进一步证明了 ASA 的体内抗龋功效。总之,ASA 作为一种乙酰化剂可减轻变异单胞菌的致龋毒力,这表明蛋白质乙酰化对变异单胞菌的抗菌和抗生物膜应用具有潜在价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inhibition of Streptococcus mutans growth and biofilm formation through protein acetylation.

Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oral Microbiology
Molecular Oral Microbiology DENTISTRY, ORAL SURGERY & MEDICINE-MICROBIOLOGY
CiteScore
6.50
自引率
5.40%
发文量
46
审稿时长
>12 weeks
期刊介绍: Molecular Oral Microbiology publishes high quality research papers and reviews on fundamental or applied molecular studies of microorganisms of the oral cavity and respiratory tract, host-microbe interactions, cellular microbiology, molecular ecology, and immunological studies of oral and respiratory tract infections. Papers describing work in virology, or in immunology unrelated to microbial colonization or infection, will not be acceptable. Studies of the prevalence of organisms or of antimicrobials agents also are not within the scope of the journal. The journal does not publish Short Communications or Letters to the Editor. Molecular Oral Microbiology is published bimonthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信