了解医学文本到 SQL 模型和数据集的通用性。

AMIA ... Annual Symposium proceedings. AMIA Symposium Pub Date : 2024-01-11 eCollection Date: 2023-01-01
Richard Tarbell, Kim-Kwang Raymond Choo, Glenn Dietrich, Anthony Rios
{"title":"了解医学文本到 SQL 模型和数据集的通用性。","authors":"Richard Tarbell, Kim-Kwang Raymond Choo, Glenn Dietrich, Anthony Rios","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Electronic medical records (EMRs) are stored in relational databases. It can be challenging to access the required information if the user is unfamiliar with the database schema or general database fundamentals. Hence, researchers have explored text-to-SQL generation methods that provide healthcare professionals direct access to EMR data without needing a database expert. However, currently available datasets have been essentially \"solved\" with state-of-the-art models achieving accuracy greater than or near 90%. In this paper, we show that there is still a long way to go before solving text-to-SQL generation in the medical domain. To show this, we create new splits of the existing medical text-to- SQL dataset MIMICSQL that better measure the generalizability of the resulting models. We evaluate state-of-the-art language models on our new split showing substantial drops in performance with accuracy dropping from up to 92% to 28%, thus showing substantial room for improvement. Moreover, we introduce a novel data augmentation approach to improve the generalizability of the language models. Overall, this paper is the first step towards developing more robust text-to-SQL models in the medical domain.</p>","PeriodicalId":72180,"journal":{"name":"AMIA ... Annual Symposium proceedings. AMIA Symposium","volume":"2023 ","pages":"669-678"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785918/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets.\",\"authors\":\"Richard Tarbell, Kim-Kwang Raymond Choo, Glenn Dietrich, Anthony Rios\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electronic medical records (EMRs) are stored in relational databases. It can be challenging to access the required information if the user is unfamiliar with the database schema or general database fundamentals. Hence, researchers have explored text-to-SQL generation methods that provide healthcare professionals direct access to EMR data without needing a database expert. However, currently available datasets have been essentially \\\"solved\\\" with state-of-the-art models achieving accuracy greater than or near 90%. In this paper, we show that there is still a long way to go before solving text-to-SQL generation in the medical domain. To show this, we create new splits of the existing medical text-to- SQL dataset MIMICSQL that better measure the generalizability of the resulting models. We evaluate state-of-the-art language models on our new split showing substantial drops in performance with accuracy dropping from up to 92% to 28%, thus showing substantial room for improvement. Moreover, we introduce a novel data augmentation approach to improve the generalizability of the language models. Overall, this paper is the first step towards developing more robust text-to-SQL models in the medical domain.</p>\",\"PeriodicalId\":72180,\"journal\":{\"name\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"volume\":\"2023 \",\"pages\":\"669-678\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10785918/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AMIA ... Annual Symposium proceedings. AMIA Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMIA ... Annual Symposium proceedings. AMIA Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子病历(EMR)存储在关系数据库中。如果用户不熟悉数据库模式或一般数据库基础知识,访问所需信息就会很困难。因此,研究人员探索了文本到 SQL 的生成方法,使医疗保健专业人员无需数据库专家就能直接访问 EMR 数据。然而,目前可用的数据集基本上都已 "解决",最先进的模型准确率超过或接近 90%。在本文中,我们将展示在解决医疗领域的文本到 SQL 生成问题方面还有很长的路要走。为了证明这一点,我们对现有的医学文本到 SQL 数据集 MIMICSQL 进行了新的拆分,以更好地衡量所生成模型的通用性。我们在新拆分的数据集上对最先进的语言模型进行了评估,结果显示性能大幅下降,准确率从高达 92% 降至 28%,由此可见还有很大的改进空间。此外,我们还引入了一种新颖的数据增强方法,以提高语言模型的通用性。总之,本文是在医疗领域开发更强大的文本到 SQL 模型的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Understanding the Generalization of Medical Text-to-SQL Models and Datasets.

Electronic medical records (EMRs) are stored in relational databases. It can be challenging to access the required information if the user is unfamiliar with the database schema or general database fundamentals. Hence, researchers have explored text-to-SQL generation methods that provide healthcare professionals direct access to EMR data without needing a database expert. However, currently available datasets have been essentially "solved" with state-of-the-art models achieving accuracy greater than or near 90%. In this paper, we show that there is still a long way to go before solving text-to-SQL generation in the medical domain. To show this, we create new splits of the existing medical text-to- SQL dataset MIMICSQL that better measure the generalizability of the resulting models. We evaluate state-of-the-art language models on our new split showing substantial drops in performance with accuracy dropping from up to 92% to 28%, thus showing substantial room for improvement. Moreover, we introduce a novel data augmentation approach to improve the generalizability of the language models. Overall, this paper is the first step towards developing more robust text-to-SQL models in the medical domain.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信