选择受众,实现社会影响力最大化

IF 1.4 Q2 SOCIAL SCIENCES, INTERDISCIPLINARY
Balázs R. Sziklai, Balázs Lengyel
{"title":"选择受众,实现社会影响力最大化","authors":"Balázs R. Sziklai, Balázs Lengyel","doi":"10.1017/nws.2023.23","DOIUrl":null,"url":null,"abstract":"Viral marketing campaigns target primarily those individuals who are central in social networks and hence have social influence. Marketing events, however, may attract diverse audience. Despite the importance of event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and compared based on their social influence. A typical application of Audience selection is choosing locations for a series of marketing events. The Audience selection problem is different from the well-known Influence Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a systemic test for ranking influence measures in the Audience Selection problem based on node sampling and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion model on two online social networks, we evaluate eight network measures of social influence. We demonstrate that the statistical assessment of these influence measures is remarkably different in the Audience Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the algorithm’s top choices exclusively.","PeriodicalId":51827,"journal":{"name":"Network Science","volume":"30 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Audience selection for maximizing social influence\",\"authors\":\"Balázs R. Sziklai, Balázs Lengyel\",\"doi\":\"10.1017/nws.2023.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viral marketing campaigns target primarily those individuals who are central in social networks and hence have social influence. Marketing events, however, may attract diverse audience. Despite the importance of event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and compared based on their social influence. A typical application of Audience selection is choosing locations for a series of marketing events. The Audience selection problem is different from the well-known Influence Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a systemic test for ranking influence measures in the Audience Selection problem based on node sampling and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion model on two online social networks, we evaluate eight network measures of social influence. We demonstrate that the statistical assessment of these influence measures is remarkably different in the Audience Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the algorithm’s top choices exclusively.\",\"PeriodicalId\":51827,\"journal\":{\"name\":\"Network Science\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/nws.2023.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SOCIAL SCIENCES, INTERDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/nws.2023.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

病毒式营销活动的主要目标群体是社交网络中的核心人物,因此具有社会影响力。然而,营销活动可能会吸引不同的受众。尽管事件营销非常重要,但人们对异质目标群体的影响还不甚了解。在本文中,我们定义了 "受众选择"(Audience Selection,AS)问题,在这个问题中,需要根据不同代理的社会影响力对其进行评估和比较。受众选择的一个典型应用是为一系列营销活动选择地点。受众选择问题与著名的影响力最大化(IM)问题有两点不同。首先,它处理的是集合而不是节点。其次,集合是多样化的,由有影响力的代理和普通代理混合组成。因此,受众选择也需要评估普通代理的贡献,而 IM 的目的只是找到顶级传播者。我们基于节点抽样和一种新颖的统计方法--排名差异总和,为受众选择问题中的排名影响度量提供了一个系统测试。我们在两个在线社交网络上使用线性阈值扩散模型,评估了八种社会影响力网络测量方法。我们证明,在受众选择问题中,当存在低排名个体时,这些影响度量的统计评估与在即时通讯问题中,当我们只关注算法的首选时,这些影响度量的统计评估明显不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Audience selection for maximizing social influence
Viral marketing campaigns target primarily those individuals who are central in social networks and hence have social influence. Marketing events, however, may attract diverse audience. Despite the importance of event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and compared based on their social influence. A typical application of Audience selection is choosing locations for a series of marketing events. The Audience selection problem is different from the well-known Influence Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a systemic test for ranking influence measures in the Audience Selection problem based on node sampling and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion model on two online social networks, we evaluate eight network measures of social influence. We demonstrate that the statistical assessment of these influence measures is remarkably different in the Audience Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the algorithm’s top choices exclusively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Science
Network Science SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
3.50
自引率
5.90%
发文量
24
期刊介绍: Network Science is an important journal for an important discipline - one using the network paradigm, focusing on actors and relational linkages, to inform research, methodology, and applications from many fields across the natural, social, engineering and informational sciences. Given growing understanding of the interconnectedness and globalization of the world, network methods are an increasingly recognized way to research aspects of modern society along with the individuals, organizations, and other actors within it. The discipline is ready for a comprehensive journal, open to papers from all relevant areas. Network Science is a defining work, shaping this discipline. The journal welcomes contributions from researchers in all areas working on network theory, methods, and data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信