矩形有理矩阵函数的费德勒线性化

IF 0.7 4区 数学 Q2 MATHEMATICS
Namita Behera, Avisek Bist, Volker Mehrmann
{"title":"矩形有理矩阵函数的费德勒线性化","authors":"Namita Behera, Avisek Bist, Volker Mehrmann","doi":"10.1007/s41980-023-00843-y","DOIUrl":null,"url":null,"abstract":"<p>Linearization is a standard approach in the computation of eigenvalues, eigenvectors and invariant subspaces of matrix polynomials and rational matrix valued functions. An important source of linearizations are the so called <i>Fiedler linearizations</i>, which are generalizations of the classical companion forms. In this paper the concept of Fiedler linearization is extended from square regular to rectangular rational matrix valued functions. The approach is applied to Rosenbrock functions arising in mathematical system theory.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fiedler Linearizations of Rectangular Rational Matrix Functions\",\"authors\":\"Namita Behera, Avisek Bist, Volker Mehrmann\",\"doi\":\"10.1007/s41980-023-00843-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Linearization is a standard approach in the computation of eigenvalues, eigenvectors and invariant subspaces of matrix polynomials and rational matrix valued functions. An important source of linearizations are the so called <i>Fiedler linearizations</i>, which are generalizations of the classical companion forms. In this paper the concept of Fiedler linearization is extended from square regular to rectangular rational matrix valued functions. The approach is applied to Rosenbrock functions arising in mathematical system theory.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-023-00843-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-023-00843-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

线性化是计算矩阵多项式和有理矩阵值函数的特征值、特征向量和不变子空间的标准方法。线性化的一个重要来源是所谓的费德勒线性化,它是经典伴形的广义化。本文将费德勒线性化概念从正方形规则函数扩展到矩形有理矩阵值函数。该方法适用于数学系统理论中出现的罗森布洛克函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fiedler Linearizations of Rectangular Rational Matrix Functions

Fiedler Linearizations of Rectangular Rational Matrix Functions

Linearization is a standard approach in the computation of eigenvalues, eigenvectors and invariant subspaces of matrix polynomials and rational matrix valued functions. An important source of linearizations are the so called Fiedler linearizations, which are generalizations of the classical companion forms. In this paper the concept of Fiedler linearization is extended from square regular to rectangular rational matrix valued functions. The approach is applied to Rosenbrock functions arising in mathematical system theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信