{"title":"超声波增强过硫酸盐氧化系统对新出现污染物的净化作用","authors":"Yanpan Li, Yanbo Zhou, Yi Zhou","doi":"10.1016/j.gee.2024.01.004","DOIUrl":null,"url":null,"abstract":"<p>Emerging contaminants (ECs) are widely present in aquatic environments, posing potential risks to both ecosystems and human health. The ultrasound-assisted persulfate oxidation process has attracted considerable attention in the degradation of ECs due to its ability to generate both sulfate radicals and cavitation effects, enhancing degradation effects. In this paper, the principle of ultrasonic synergistic Fenton-like oxidation system for degrading organic pollutants was reviewed, divided into homogeneous system, non-homogeneous system, and single-atom system to explore the synergistic effect of ultrasound-enhanced persulfate technology in three aspects, and the effects of environmental factors such as ultrasonic frequency and power, system pH, temperature, and initial oxidant concentration on the system's decontamination performance were discussed. Finally, future research on ultrasonically activated persulfate technology is summarized and prospected.</p>","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":"4 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasonic enhancement of persulfate oxidation system governs emerging pollutants decontamination\",\"authors\":\"Yanpan Li, Yanbo Zhou, Yi Zhou\",\"doi\":\"10.1016/j.gee.2024.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emerging contaminants (ECs) are widely present in aquatic environments, posing potential risks to both ecosystems and human health. The ultrasound-assisted persulfate oxidation process has attracted considerable attention in the degradation of ECs due to its ability to generate both sulfate radicals and cavitation effects, enhancing degradation effects. In this paper, the principle of ultrasonic synergistic Fenton-like oxidation system for degrading organic pollutants was reviewed, divided into homogeneous system, non-homogeneous system, and single-atom system to explore the synergistic effect of ultrasound-enhanced persulfate technology in three aspects, and the effects of environmental factors such as ultrasonic frequency and power, system pH, temperature, and initial oxidant concentration on the system's decontamination performance were discussed. Finally, future research on ultrasonically activated persulfate technology is summarized and prospected.</p>\",\"PeriodicalId\":12744,\"journal\":{\"name\":\"Green Energy & Environment\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy & Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gee.2024.01.004\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.01.004","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ultrasonic enhancement of persulfate oxidation system governs emerging pollutants decontamination
Emerging contaminants (ECs) are widely present in aquatic environments, posing potential risks to both ecosystems and human health. The ultrasound-assisted persulfate oxidation process has attracted considerable attention in the degradation of ECs due to its ability to generate both sulfate radicals and cavitation effects, enhancing degradation effects. In this paper, the principle of ultrasonic synergistic Fenton-like oxidation system for degrading organic pollutants was reviewed, divided into homogeneous system, non-homogeneous system, and single-atom system to explore the synergistic effect of ultrasound-enhanced persulfate technology in three aspects, and the effects of environmental factors such as ultrasonic frequency and power, system pH, temperature, and initial oxidant concentration on the system's decontamination performance were discussed. Finally, future research on ultrasonically activated persulfate technology is summarized and prospected.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.