Huu Duy Nguyen, Van Hong Nguyen, Quan Vu Viet Du, Cong Tuan Nguyen, Dinh Kha Dang, Quang Hai Truong, Ngo Bao Toan Dang, Quang Tuan Tran, Quoc-Huy Nguyen, Quang-Thanh Bui
{"title":"基于混合模型的机器学习在越南中北部地下水潜力预测中的应用","authors":"Huu Duy Nguyen, Van Hong Nguyen, Quan Vu Viet Du, Cong Tuan Nguyen, Dinh Kha Dang, Quang Hai Truong, Ngo Bao Toan Dang, Quang Tuan Tran, Quoc-Huy Nguyen, Quang-Thanh Bui","doi":"10.1007/s12145-023-01209-y","DOIUrl":null,"url":null,"abstract":"<p>Groundwater resources are required for domestic water supply, agriculture, and industry, and the strategic importance of water resources will only increase in the context of climate change and population growth. For optimal management of this crucial resource, exploration of the potential of groundwater is necessary. To this end, the objective of this study was the development of a new method based on remote sensing, deep neural networks (DNNs), and the optimization algorithms Adam, Flower Pollination Algorithm (FPA), Artificial Ecosystem-based Optimization (AEO), Pathfinder Algorithm (PFA), African Vultures Optimization Algorithm (AVOA), and Whale Optimization Algorithm (WOA) to predict groundwater potential in the North Central region of Vietnam. 95 springs or wells with 13 conditioning factors were used as input data to the machine learning model to find the statistical relationships between the presence and nonpresence of groundwater and the conditioning factors. Statistical indices, namely root mean square error (RMSE), area under curve (AUC), accuracy, kappa (K) and coefficient of determination (R<sup>2</sup>), were used to validate the models. The results indicated that all the proposed models were effective in predicting groundwater potential, with AUC values of more than 0.95. Among the proposed models, the DNN-AVOA model was more effective than the other models, with an AUC value of 0.97 and an RMSE of 0.22. This was followed by DNN-PFA (AUC=0.97, RMSE=0.22), DNN-FPA (AUC=0.97, RMSE=0.24), DNN-AEO (AUC=0.96, RMSE=0.25), DNN-Adam (AUC=0.97, RMSE=0.28), and DNN-WOA (AUC=0.95, RMSE=0.3). In addition, according to the groundwater potential map, about 25–30% of the region was in the high and very high potential groundwater zone; 5–10% was in the moderate zone, and 60–70% was low or very low. The results of this study can be used in the management of water resources in general and the location of appropriate wells in particular.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"62 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of hybrid model-based machine learning for groundwater potential prediction in the north central of Vietnam\",\"authors\":\"Huu Duy Nguyen, Van Hong Nguyen, Quan Vu Viet Du, Cong Tuan Nguyen, Dinh Kha Dang, Quang Hai Truong, Ngo Bao Toan Dang, Quang Tuan Tran, Quoc-Huy Nguyen, Quang-Thanh Bui\",\"doi\":\"10.1007/s12145-023-01209-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Groundwater resources are required for domestic water supply, agriculture, and industry, and the strategic importance of water resources will only increase in the context of climate change and population growth. For optimal management of this crucial resource, exploration of the potential of groundwater is necessary. To this end, the objective of this study was the development of a new method based on remote sensing, deep neural networks (DNNs), and the optimization algorithms Adam, Flower Pollination Algorithm (FPA), Artificial Ecosystem-based Optimization (AEO), Pathfinder Algorithm (PFA), African Vultures Optimization Algorithm (AVOA), and Whale Optimization Algorithm (WOA) to predict groundwater potential in the North Central region of Vietnam. 95 springs or wells with 13 conditioning factors were used as input data to the machine learning model to find the statistical relationships between the presence and nonpresence of groundwater and the conditioning factors. Statistical indices, namely root mean square error (RMSE), area under curve (AUC), accuracy, kappa (K) and coefficient of determination (R<sup>2</sup>), were used to validate the models. The results indicated that all the proposed models were effective in predicting groundwater potential, with AUC values of more than 0.95. Among the proposed models, the DNN-AVOA model was more effective than the other models, with an AUC value of 0.97 and an RMSE of 0.22. This was followed by DNN-PFA (AUC=0.97, RMSE=0.22), DNN-FPA (AUC=0.97, RMSE=0.24), DNN-AEO (AUC=0.96, RMSE=0.25), DNN-Adam (AUC=0.97, RMSE=0.28), and DNN-WOA (AUC=0.95, RMSE=0.3). In addition, according to the groundwater potential map, about 25–30% of the region was in the high and very high potential groundwater zone; 5–10% was in the moderate zone, and 60–70% was low or very low. The results of this study can be used in the management of water resources in general and the location of appropriate wells in particular.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-023-01209-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-023-01209-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Application of hybrid model-based machine learning for groundwater potential prediction in the north central of Vietnam
Groundwater resources are required for domestic water supply, agriculture, and industry, and the strategic importance of water resources will only increase in the context of climate change and population growth. For optimal management of this crucial resource, exploration of the potential of groundwater is necessary. To this end, the objective of this study was the development of a new method based on remote sensing, deep neural networks (DNNs), and the optimization algorithms Adam, Flower Pollination Algorithm (FPA), Artificial Ecosystem-based Optimization (AEO), Pathfinder Algorithm (PFA), African Vultures Optimization Algorithm (AVOA), and Whale Optimization Algorithm (WOA) to predict groundwater potential in the North Central region of Vietnam. 95 springs or wells with 13 conditioning factors were used as input data to the machine learning model to find the statistical relationships between the presence and nonpresence of groundwater and the conditioning factors. Statistical indices, namely root mean square error (RMSE), area under curve (AUC), accuracy, kappa (K) and coefficient of determination (R2), were used to validate the models. The results indicated that all the proposed models were effective in predicting groundwater potential, with AUC values of more than 0.95. Among the proposed models, the DNN-AVOA model was more effective than the other models, with an AUC value of 0.97 and an RMSE of 0.22. This was followed by DNN-PFA (AUC=0.97, RMSE=0.22), DNN-FPA (AUC=0.97, RMSE=0.24), DNN-AEO (AUC=0.96, RMSE=0.25), DNN-Adam (AUC=0.97, RMSE=0.28), and DNN-WOA (AUC=0.95, RMSE=0.3). In addition, according to the groundwater potential map, about 25–30% of the region was in the high and very high potential groundwater zone; 5–10% was in the moderate zone, and 60–70% was low or very low. The results of this study can be used in the management of water resources in general and the location of appropriate wells in particular.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.