准周期哈密顿系统中不变环的流图参数化方法

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
Álvaro Fernández-Mora, Alex Haro, J. M. Mondelo
{"title":"准周期哈密顿系统中不变环的流图参数化方法","authors":"Álvaro Fernández-Mora, Alex Haro, J. M. Mondelo","doi":"10.1137/23m1561257","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 127-166, March 2024. <br/> Abstract. The aim of this paper is to present a method to compute parameterizations of partially hyperbolic invariant tori and their invariant bundles in nonautonomous quasi-periodic Hamiltonian systems. We generalize flow map parameterization methods to the quasi-periodic setting. To this end, we introduce the notion of fiberwise isotropic tori and sketch definitions and results on fiberwise symplectic deformations and their moment maps. These constructs are vital to work in a suitable setting and lead to the proofs of “magic cancellations” that guarantee the existence of solutions of cohomological equations. We apply our algorithms in the elliptic restricted three body problem and compute nonresonant 3-dimensional invariant tori and their invariant bundles around the [math] point.","PeriodicalId":49534,"journal":{"name":"SIAM Journal on Applied Dynamical Systems","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow Map Parameterization Methods for Invariant Tori in Quasi-Periodic Hamiltonian Systems\",\"authors\":\"Álvaro Fernández-Mora, Alex Haro, J. M. Mondelo\",\"doi\":\"10.1137/23m1561257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 127-166, March 2024. <br/> Abstract. The aim of this paper is to present a method to compute parameterizations of partially hyperbolic invariant tori and their invariant bundles in nonautonomous quasi-periodic Hamiltonian systems. We generalize flow map parameterization methods to the quasi-periodic setting. To this end, we introduce the notion of fiberwise isotropic tori and sketch definitions and results on fiberwise symplectic deformations and their moment maps. These constructs are vital to work in a suitable setting and lead to the proofs of “magic cancellations” that guarantee the existence of solutions of cohomological equations. We apply our algorithms in the elliptic restricted three body problem and compute nonresonant 3-dimensional invariant tori and their invariant bundles around the [math] point.\",\"PeriodicalId\":49534,\"journal\":{\"name\":\"SIAM Journal on Applied Dynamical Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1561257\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1561257","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用动力系统期刊》,第 23 卷第 1 期,第 127-166 页,2024 年 3 月。 摘要本文旨在提出一种计算非自治准周期哈密顿系统中部分双曲不变环及其不变束参数化的方法。我们将流图参数化方法推广到准周期设置中。为此,我们引入了纤向各向同性环的概念,并简要介绍了纤向交映变形及其矩图的定义和结果。这些构造对于在合适的环境中工作至关重要,并导致了 "神奇抵消 "的证明,从而保证了同调方程解的存在性。我们在椭圆受限三体问题中应用了我们的算法,并计算了[math]点周围的非共振三维不变环及其不变束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow Map Parameterization Methods for Invariant Tori in Quasi-Periodic Hamiltonian Systems
SIAM Journal on Applied Dynamical Systems, Volume 23, Issue 1, Page 127-166, March 2024.
Abstract. The aim of this paper is to present a method to compute parameterizations of partially hyperbolic invariant tori and their invariant bundles in nonautonomous quasi-periodic Hamiltonian systems. We generalize flow map parameterization methods to the quasi-periodic setting. To this end, we introduce the notion of fiberwise isotropic tori and sketch definitions and results on fiberwise symplectic deformations and their moment maps. These constructs are vital to work in a suitable setting and lead to the proofs of “magic cancellations” that guarantee the existence of solutions of cohomological equations. We apply our algorithms in the elliptic restricted three body problem and compute nonresonant 3-dimensional invariant tori and their invariant bundles around the [math] point.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Applied Dynamical Systems
SIAM Journal on Applied Dynamical Systems 物理-物理:数学物理
CiteScore
3.60
自引率
4.80%
发文量
74
审稿时长
6 months
期刊介绍: SIAM Journal on Applied Dynamical Systems (SIADS) publishes research articles on the mathematical analysis and modeling of dynamical systems and its application to the physical, engineering, life, and social sciences. SIADS is published in electronic format only.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信