带强一致性操作符的准一致性的证明论方面

Pub Date : 2024-01-13 DOI:10.1007/s11225-023-10089-8
Victoria Arce Pistone, Martín Figallo
{"title":"带强一致性操作符的准一致性的证明论方面","authors":"Victoria Arce Pistone, Martín Figallo","doi":"10.1007/s11225-023-10089-8","DOIUrl":null,"url":null,"abstract":"<p>In order to develop efficient tools for automated reasoning with inconsistency (theorem provers), eventually making Logics of Formal inconsistency (<b>LFI</b>) a more appealing formalism for reasoning under uncertainty, it is important to develop the proof theory of the first-order versions of such <b>LFI</b>s. Here, we intend to make a first step in this direction. On the other hand, the logic <b>Ciore</b> was developed to provide new logical systems in the study of inconsistent databases from the point of view of <b>LFI</b>s. An interesting fact about <b>Ciore</b> is that it has a <i>strong</i> consistency operator, that is, a consistency operator which (forward/backward) propagates inconsistency. Also, it turns out to be an algebraizable logic (in the sense of Blok and Pigozzi) that can be characterized by means of a 3-valued logical matrix. Recently, a first-order version of <b>Ciore</b>, namely <b>QCiore</b>, was defined preserving the spirit of <b>Ciore</b>, that is, without introducing unexpected relationships between the quantifiers. Besides, some important model-theoretic results were obtained for this logic. In this paper we study some proof–theoretic aspects of both <b>Ciore</b> and <b>QCiore</b> respectively. In first place, we introduce a two-sided sequent system for <b>Ciore</b>. Later, we prove that this system enjoys the cut-elimination property and apply it to derive some interesting properties. Later, we extend the above-mentioned system to first-order languages and prove completeness and cut-elimination property using the well-known Shütte’s technique.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof-Theoretic Aspects of Paraconsistency with Strong Consistency Operator\",\"authors\":\"Victoria Arce Pistone, Martín Figallo\",\"doi\":\"10.1007/s11225-023-10089-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to develop efficient tools for automated reasoning with inconsistency (theorem provers), eventually making Logics of Formal inconsistency (<b>LFI</b>) a more appealing formalism for reasoning under uncertainty, it is important to develop the proof theory of the first-order versions of such <b>LFI</b>s. Here, we intend to make a first step in this direction. On the other hand, the logic <b>Ciore</b> was developed to provide new logical systems in the study of inconsistent databases from the point of view of <b>LFI</b>s. An interesting fact about <b>Ciore</b> is that it has a <i>strong</i> consistency operator, that is, a consistency operator which (forward/backward) propagates inconsistency. Also, it turns out to be an algebraizable logic (in the sense of Blok and Pigozzi) that can be characterized by means of a 3-valued logical matrix. Recently, a first-order version of <b>Ciore</b>, namely <b>QCiore</b>, was defined preserving the spirit of <b>Ciore</b>, that is, without introducing unexpected relationships between the quantifiers. Besides, some important model-theoretic results were obtained for this logic. In this paper we study some proof–theoretic aspects of both <b>Ciore</b> and <b>QCiore</b> respectively. In first place, we introduce a two-sided sequent system for <b>Ciore</b>. Later, we prove that this system enjoys the cut-elimination property and apply it to derive some interesting properties. Later, we extend the above-mentioned system to first-order languages and prove completeness and cut-elimination property using the well-known Shütte’s technique.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-023-10089-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-023-10089-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了开发高效的不一致性自动推理工具(定理证明器),最终使形式不一致性逻辑(LFI)成为一种更有吸引力的不确定性推理形式主义,开发这种 LFI 一阶版本的证明理论非常重要。在此,我们打算朝着这个方向迈出第一步。另一方面,逻辑 Ciore 的开发是为了从 LFI 的角度为不一致数据库的研究提供新的逻辑系统。关于 Ciore 的一个有趣事实是,它有一个强一致性算子,即一个(向前/向后)传播不一致性的一致性算子。此外,它还是一种可代数逻辑(在布洛克和皮戈齐的意义上),可以通过一个三值逻辑矩阵来描述。最近,人们定义了 Ciore 的一阶版本,即 QCiore,它保留了 Ciore 的精神,即没有引入量词之间的意外关系。此外,该逻辑还获得了一些重要的模型理论结果。本文将分别研究 Ciore 和 QCiore 的一些证明论方面的问题。首先,我们介绍了 Ciore 的双面序列系统。随后,我们证明了该系统具有剪切消除特性,并应用该特性推导出了一些有趣的性质。之后,我们将上述系统扩展到一阶语言,并使用著名的舒特技术证明了其完备性和剪切消除属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Proof-Theoretic Aspects of Paraconsistency with Strong Consistency Operator

In order to develop efficient tools for automated reasoning with inconsistency (theorem provers), eventually making Logics of Formal inconsistency (LFI) a more appealing formalism for reasoning under uncertainty, it is important to develop the proof theory of the first-order versions of such LFIs. Here, we intend to make a first step in this direction. On the other hand, the logic Ciore was developed to provide new logical systems in the study of inconsistent databases from the point of view of LFIs. An interesting fact about Ciore is that it has a strong consistency operator, that is, a consistency operator which (forward/backward) propagates inconsistency. Also, it turns out to be an algebraizable logic (in the sense of Blok and Pigozzi) that can be characterized by means of a 3-valued logical matrix. Recently, a first-order version of Ciore, namely QCiore, was defined preserving the spirit of Ciore, that is, without introducing unexpected relationships between the quantifiers. Besides, some important model-theoretic results were obtained for this logic. In this paper we study some proof–theoretic aspects of both Ciore and QCiore respectively. In first place, we introduce a two-sided sequent system for Ciore. Later, we prove that this system enjoys the cut-elimination property and apply it to derive some interesting properties. Later, we extend the above-mentioned system to first-order languages and prove completeness and cut-elimination property using the well-known Shütte’s technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信