基于 PCC-GRA-PCA 气象要素降维法的光伏输出功率预测方法

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Lingsheng Yang, Xiangyu Cui, Wei Li
{"title":"基于 PCC-GRA-PCA 气象要素降维法的光伏输出功率预测方法","authors":"Lingsheng Yang, Xiangyu Cui, Wei Li","doi":"10.1080/15435075.2024.2303357","DOIUrl":null,"url":null,"abstract":"Photovoltaic (PV) power generation forecasting models require a large amount of meteorological data, which may include irrelevant and redundant information. As the volume of data increases, the dat...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"23 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method for predicting photovoltaic output power based on PCC-GRA-PCA meteorological elements dimensionality reduction method\",\"authors\":\"Lingsheng Yang, Xiangyu Cui, Wei Li\",\"doi\":\"10.1080/15435075.2024.2303357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic (PV) power generation forecasting models require a large amount of meteorological data, which may include irrelevant and redundant information. As the volume of data increases, the dat...\",\"PeriodicalId\":14000,\"journal\":{\"name\":\"International Journal of Green Energy\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15435075.2024.2303357\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2303357","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

光伏 (PV) 发电预测模型需要大量气象数据,其中可能包括无关信息和冗余信息。随着数据量的增加,数据...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method for predicting photovoltaic output power based on PCC-GRA-PCA meteorological elements dimensionality reduction method
Photovoltaic (PV) power generation forecasting models require a large amount of meteorological data, which may include irrelevant and redundant information. As the volume of data increases, the dat...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Green Energy
International Journal of Green Energy 工程技术-能源与燃料
CiteScore
6.60
自引率
9.10%
发文量
112
审稿时长
3.7 months
期刊介绍: International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信