关于代数封闭中的秩

Amichai Lampert, Tamar Ziegler
{"title":"关于代数封闭中的秩","authors":"Amichai Lampert, Tamar Ziegler","doi":"10.1007/s00029-023-00903-5","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\( {{\\textbf{k}}}\\)</span> be a field and <span>\\(Q\\in {{\\textbf{k}}}[x_1, \\ldots , x_s]\\)</span> a form (homogeneous polynomial) of degree <span>\\(d&gt;1.\\)</span> The <span>\\({{\\textbf{k}}}\\)</span>-Schmidt rank <span>\\(\\text {rk}_{{\\textbf{k}}}(Q)\\)</span> of <i>Q</i> is the minimal <i>r</i> such that <span>\\(Q= \\sum _{i=1}^r R_iS_i\\)</span> with <span>\\(R_i, S_i \\in {{\\textbf{k}}}[x_1, \\ldots , x_s]\\)</span> forms of degree <span>\\(&lt;d\\)</span>. When <span>\\( {{\\textbf{k}}}\\)</span> is algebraically closed and <span>\\( \\text {char}({{\\textbf{k}}})\\)</span> doesn’t divide <i>d</i>, this rank is closely related to <span>\\( \\text {codim}_{{\\mathbb {A}}^s} (\\nabla Q(x) = 0)\\)</span> - also known as the Birch rank of <i>Q</i>. When <span>\\( {{\\textbf{k}}}\\)</span> is a number field, a finite field or a function field, we give polynomial bounds for <span>\\( \\text {rk}_{{\\textbf{k}}}(Q) \\)</span> in terms of <span>\\( \\text {rk}_{{\\bar{{{\\textbf{k}}}}}} (Q) \\)</span> where <span>\\( {\\bar{{{\\textbf{k}}}}} \\)</span> is the algebraic closure of <span>\\( {{\\textbf{k}}}. \\)</span> Prior to this work no such bound (even ineffective) was known for <span>\\(d&gt;4\\)</span>. This result has immediate consequences for counting integer points (when <span>\\( {{\\textbf{k}}}\\)</span> is a number field) or prime points (when <span>\\( {{\\textbf{k}}}= {\\mathbb {Q}}\\)</span>) of the variety <span>\\( (Q=0) \\)</span> assuming <span>\\( \\text {rk}_{{{\\textbf{k}}}} (Q) \\)</span> is large.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On rank in algebraic closure\",\"authors\":\"Amichai Lampert, Tamar Ziegler\",\"doi\":\"10.1007/s00029-023-00903-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\( {{\\\\textbf{k}}}\\\\)</span> be a field and <span>\\\\(Q\\\\in {{\\\\textbf{k}}}[x_1, \\\\ldots , x_s]\\\\)</span> a form (homogeneous polynomial) of degree <span>\\\\(d&gt;1.\\\\)</span> The <span>\\\\({{\\\\textbf{k}}}\\\\)</span>-Schmidt rank <span>\\\\(\\\\text {rk}_{{\\\\textbf{k}}}(Q)\\\\)</span> of <i>Q</i> is the minimal <i>r</i> such that <span>\\\\(Q= \\\\sum _{i=1}^r R_iS_i\\\\)</span> with <span>\\\\(R_i, S_i \\\\in {{\\\\textbf{k}}}[x_1, \\\\ldots , x_s]\\\\)</span> forms of degree <span>\\\\(&lt;d\\\\)</span>. When <span>\\\\( {{\\\\textbf{k}}}\\\\)</span> is algebraically closed and <span>\\\\( \\\\text {char}({{\\\\textbf{k}}})\\\\)</span> doesn’t divide <i>d</i>, this rank is closely related to <span>\\\\( \\\\text {codim}_{{\\\\mathbb {A}}^s} (\\\\nabla Q(x) = 0)\\\\)</span> - also known as the Birch rank of <i>Q</i>. When <span>\\\\( {{\\\\textbf{k}}}\\\\)</span> is a number field, a finite field or a function field, we give polynomial bounds for <span>\\\\( \\\\text {rk}_{{\\\\textbf{k}}}(Q) \\\\)</span> in terms of <span>\\\\( \\\\text {rk}_{{\\\\bar{{{\\\\textbf{k}}}}}} (Q) \\\\)</span> where <span>\\\\( {\\\\bar{{{\\\\textbf{k}}}}} \\\\)</span> is the algebraic closure of <span>\\\\( {{\\\\textbf{k}}}. \\\\)</span> Prior to this work no such bound (even ineffective) was known for <span>\\\\(d&gt;4\\\\)</span>. This result has immediate consequences for counting integer points (when <span>\\\\( {{\\\\textbf{k}}}\\\\)</span> is a number field) or prime points (when <span>\\\\( {{\\\\textbf{k}}}= {\\\\mathbb {Q}}\\\\)</span>) of the variety <span>\\\\( (Q=0) \\\\)</span> assuming <span>\\\\( \\\\text {rk}_{{{\\\\textbf{k}}}} (Q) \\\\)</span> is large.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-023-00903-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00903-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 \( {{textbf{k}}}\) 是一个域,并且 \(Q\in {{textbf{k}}}[x_1, \ldots , x_s]\) 是阶数为\(d>1)的形式(同次多项式)。\Q 的施密特秩({{textbf{k}}})是最小的 r,使得 \(Q= \sum _{i=1}^r R_iS_i\) with \(R_i、S_i 在 {{textbf{k}}}[x_1,\ldots,x_s]中)的形式的度(<;d\).当 \( {{textbf{k}}} 是代数封闭的,并且 \( \text {char}({{textbf{k}})\) 不除以 d 时,这个秩与 \( \text {codim}_{{\mathbb {A}}^s} (\nabla Q(x) = 0)\) 密切相关。)- 也称为 Q 的 Birch 秩。当 \( {{\textbf{k}}}\) 是一个数域、有限域或函数域时、我们用 \( \text {rk}_{{\textbf{k}}(Q) \) 给出了 \( \text {rk}_{{\bar{{{\textbf{k}}}}}} (Q) \) 的多项式边界,其中 \( {\bar{{\textbf{k}}}}} \) 是 \( {{\textbf{k}} 的代数闭包。\在这项工作之前,人们还不知道有这样一个约束(甚至是无效的)来表示 \(d>4\)。假设 \( \text {rk}_{{textbf{k}}}}} (Q) \)很大,那么这个结果对于计算(Q=0) \)的整数点(当 \( {{textbf{k}} 是一个数域)或素数点(当 \( {{textbf{k}}= {\mathbb {Q}}\)) 有直接的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On rank in algebraic closure

Let \( {{\textbf{k}}}\) be a field and \(Q\in {{\textbf{k}}}[x_1, \ldots , x_s]\) a form (homogeneous polynomial) of degree \(d>1.\) The \({{\textbf{k}}}\)-Schmidt rank \(\text {rk}_{{\textbf{k}}}(Q)\) of Q is the minimal r such that \(Q= \sum _{i=1}^r R_iS_i\) with \(R_i, S_i \in {{\textbf{k}}}[x_1, \ldots , x_s]\) forms of degree \(<d\). When \( {{\textbf{k}}}\) is algebraically closed and \( \text {char}({{\textbf{k}}})\) doesn’t divide d, this rank is closely related to \( \text {codim}_{{\mathbb {A}}^s} (\nabla Q(x) = 0)\) - also known as the Birch rank of Q. When \( {{\textbf{k}}}\) is a number field, a finite field or a function field, we give polynomial bounds for \( \text {rk}_{{\textbf{k}}}(Q) \) in terms of \( \text {rk}_{{\bar{{{\textbf{k}}}}}} (Q) \) where \( {\bar{{{\textbf{k}}}}} \) is the algebraic closure of \( {{\textbf{k}}}. \) Prior to this work no such bound (even ineffective) was known for \(d>4\). This result has immediate consequences for counting integer points (when \( {{\textbf{k}}}\) is a number field) or prime points (when \( {{\textbf{k}}}= {\mathbb {Q}}\)) of the variety \( (Q=0) \) assuming \( \text {rk}_{{{\textbf{k}}}} (Q) \) is large.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信