非相对论(伽利略)和超相对论(卡罗尔)状态下κ$-闵科夫斯基时空的命运

Deeponjit Bose, Anwesha Chakraborty, Biswajit Chakraborty
{"title":"非相对论(伽利略)和超相对论(卡罗尔)状态下κ$-闵科夫斯基时空的命运","authors":"Deeponjit Bose, Anwesha Chakraborty, Biswajit Chakraborty","doi":"arxiv-2401.05769","DOIUrl":null,"url":null,"abstract":"Here, we present an algebraic and kinematical analysis of non-commutative\n$\\kappa$-Minkowski spaces within Galilean (non-relativistic) and Carrollian\n(ultra-relativistic) regimes. Utilizing the theory of Wigner-In\\\"{o}nu\ncontractions, we begin with a brief review of how one can apply these\ncontractions to the well-known Poincar\\'{e} algebra, yielding the corresponding\nGalilean (both massive and mass-less) and Carrollian algebras as $c \\to \\infty$\nand $c\\to 0$, respectively. Subsequently, we methodically apply these\ncontractions to non-commutative $\\kappa$-deformed spaces, revealing compelling\ninsights into the interplay among the non-commutative parameters $a^\\mu$ (with\n$|a^\\nu|$ being of the order of Planck length scale) and the speed of light $c$\nas it approaches both infinity and zero. Our exploration predicts a sort of\n\"branching\" of the non-commutative parameters $a^\\mu$, leading to the emergence\nof a novel length scale and time scale in either limit. Furthermore, our\ninvestigation extends to the examination of curved momentum spaces and their\ngeodesic distances in appropriate subspaces of the $\\kappa$-deformed Newtonian\nand Carrollian space-times. We finally delve into the study of their deformed\ndispersion relations, arising from these deformed geodesic distances, providing\na comprehensive understanding of the nature of these space-times.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fate of $κ$-Minkowski space-time in non relativistic (Galilean) and ultra-relativistic (Carrollian) regimes\",\"authors\":\"Deeponjit Bose, Anwesha Chakraborty, Biswajit Chakraborty\",\"doi\":\"arxiv-2401.05769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we present an algebraic and kinematical analysis of non-commutative\\n$\\\\kappa$-Minkowski spaces within Galilean (non-relativistic) and Carrollian\\n(ultra-relativistic) regimes. Utilizing the theory of Wigner-In\\\\\\\"{o}nu\\ncontractions, we begin with a brief review of how one can apply these\\ncontractions to the well-known Poincar\\\\'{e} algebra, yielding the corresponding\\nGalilean (both massive and mass-less) and Carrollian algebras as $c \\\\to \\\\infty$\\nand $c\\\\to 0$, respectively. Subsequently, we methodically apply these\\ncontractions to non-commutative $\\\\kappa$-deformed spaces, revealing compelling\\ninsights into the interplay among the non-commutative parameters $a^\\\\mu$ (with\\n$|a^\\\\nu|$ being of the order of Planck length scale) and the speed of light $c$\\nas it approaches both infinity and zero. Our exploration predicts a sort of\\n\\\"branching\\\" of the non-commutative parameters $a^\\\\mu$, leading to the emergence\\nof a novel length scale and time scale in either limit. Furthermore, our\\ninvestigation extends to the examination of curved momentum spaces and their\\ngeodesic distances in appropriate subspaces of the $\\\\kappa$-deformed Newtonian\\nand Carrollian space-times. We finally delve into the study of their deformed\\ndispersion relations, arising from these deformed geodesic distances, providing\\na comprehensive understanding of the nature of these space-times.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.05769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们将对伽利略(非相对论)和卡罗尔(超相对论)状态下的非交换$\kappa$-闵可夫斯基空间进行代数和运动学分析。利用维格纳-因纽(Wigner-In\"{o}nucontractions)理论,我们首先简要回顾了如何将这些contractions应用于著名的Poincar\'{e}代数,从而得到相应的伽利略(大质量和无质量)代数和卡罗尔代数,分别为$c \to \infty$和$c \to 0$。随后,我们有条不紊地将这些contractions应用于非交换$\kappa$变形空间,揭示了非交换参数$a^\mu$($|a^\nu|$是普朗克长度尺度的数量级)与光速$c$之间在接近无穷大和零时的相互作用。我们的探索预测了非交换参数$a^\mu$的某种 "分支",从而导致在任一极限下出现新的长度尺度和时间尺度。此外,我们的研究还扩展到对弯曲动量空间及其在$\kappa$变形牛顿时空和卡罗尔时空的适当子空间中的大地距离的考察。最后,我们深入研究了由这些变形测地距离产生的变形色散关系,从而对这些时空的性质有了全面的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fate of $κ$-Minkowski space-time in non relativistic (Galilean) and ultra-relativistic (Carrollian) regimes
Here, we present an algebraic and kinematical analysis of non-commutative $\kappa$-Minkowski spaces within Galilean (non-relativistic) and Carrollian (ultra-relativistic) regimes. Utilizing the theory of Wigner-In\"{o}nu contractions, we begin with a brief review of how one can apply these contractions to the well-known Poincar\'{e} algebra, yielding the corresponding Galilean (both massive and mass-less) and Carrollian algebras as $c \to \infty$ and $c\to 0$, respectively. Subsequently, we methodically apply these contractions to non-commutative $\kappa$-deformed spaces, revealing compelling insights into the interplay among the non-commutative parameters $a^\mu$ (with $|a^\nu|$ being of the order of Planck length scale) and the speed of light $c$ as it approaches both infinity and zero. Our exploration predicts a sort of "branching" of the non-commutative parameters $a^\mu$, leading to the emergence of a novel length scale and time scale in either limit. Furthermore, our investigation extends to the examination of curved momentum spaces and their geodesic distances in appropriate subspaces of the $\kappa$-deformed Newtonian and Carrollian space-times. We finally delve into the study of their deformed dispersion relations, arising from these deformed geodesic distances, providing a comprehensive understanding of the nature of these space-times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信