连续对称的 SymTFT

T. Daniel Brennan, Zhengdi Sun
{"title":"连续对称的 SymTFT","authors":"T. Daniel Brennan, Zhengdi Sun","doi":"arxiv-2401.06128","DOIUrl":null,"url":null,"abstract":"Symmetry is a powerful tool for studying dynamics in QFT as they provide\nselection rules, constrain RG flows, and allow for simplified dynamics.\nCurrently, our understanding is that the most general form of symmetry is\ndescribed by categorical symmetries which can be realized via Symmetry TQFTs or\n``SymTFTs.\" In this paper, we show how the framework of the SymTFT, which is\nunderstood for discrete symmetries (i.e. finite categorical symmetries), can be\ngeneralized to continuous symmetries. In addition to demonstrating how $U(1)$\nglobal symmetries can be incorporated into the paradigm of the SymTFT, we apply\nour formalism to construct the SymTFT for the $\\mathbb{Q}/\\mathbb{Z}$\nnon-invertible chiral symmetry in $4d$ theories, demonstrate how symmetry\nfractionalization is realized SymTFTs, and conjecture the SymTFT for general\ncontinuous $G^{(0)}$ global symmetries.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A SymTFT for Continuous Symmetries\",\"authors\":\"T. Daniel Brennan, Zhengdi Sun\",\"doi\":\"arxiv-2401.06128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetry is a powerful tool for studying dynamics in QFT as they provide\\nselection rules, constrain RG flows, and allow for simplified dynamics.\\nCurrently, our understanding is that the most general form of symmetry is\\ndescribed by categorical symmetries which can be realized via Symmetry TQFTs or\\n``SymTFTs.\\\" In this paper, we show how the framework of the SymTFT, which is\\nunderstood for discrete symmetries (i.e. finite categorical symmetries), can be\\ngeneralized to continuous symmetries. In addition to demonstrating how $U(1)$\\nglobal symmetries can be incorporated into the paradigm of the SymTFT, we apply\\nour formalism to construct the SymTFT for the $\\\\mathbb{Q}/\\\\mathbb{Z}$\\nnon-invertible chiral symmetry in $4d$ theories, demonstrate how symmetry\\nfractionalization is realized SymTFTs, and conjecture the SymTFT for general\\ncontinuous $G^{(0)}$ global symmetries.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.06128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.06128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对称性是研究QFT动力学的有力工具,因为它们提供了选择规则,约束了RG流,并允许简化动力学。目前,我们的理解是,对称性的最一般形式是由分类对称性来描述的,而分类对称性可以通过对称TQFT或 "SymTFT "来实现。在本文中,我们展示了如何将离散对称(即有限分类对称)所理解的 SymTFT 框架推广到连续对称。除了展示如何把$U(1)$全局对称纳入SymTFT范式之外,我们还应用我们的形式主义构建了$4d$理论中$\mathbb{Q}/\mathbb{Z}$非不可逆手性对称的SymTFT,展示了对称分化是如何实现SymTFT的,并猜想了一般连续$G^{(0)}$全局对称的SymTFT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A SymTFT for Continuous Symmetries
Symmetry is a powerful tool for studying dynamics in QFT as they provide selection rules, constrain RG flows, and allow for simplified dynamics. Currently, our understanding is that the most general form of symmetry is described by categorical symmetries which can be realized via Symmetry TQFTs or ``SymTFTs." In this paper, we show how the framework of the SymTFT, which is understood for discrete symmetries (i.e. finite categorical symmetries), can be generalized to continuous symmetries. In addition to demonstrating how $U(1)$ global symmetries can be incorporated into the paradigm of the SymTFT, we apply our formalism to construct the SymTFT for the $\mathbb{Q}/\mathbb{Z}$ non-invertible chiral symmetry in $4d$ theories, demonstrate how symmetry fractionalization is realized SymTFTs, and conjecture the SymTFT for general continuous $G^{(0)}$ global symmetries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信