小角度极限下的扭曲 TMD:指数平坦带和琐碎带

Simon Becker, Mengxuan Yang
{"title":"小角度极限下的扭曲 TMD:指数平坦带和琐碎带","authors":"Simon Becker, Mengxuan Yang","doi":"arxiv-2401.06078","DOIUrl":null,"url":null,"abstract":"Recent experiments discovered fractional Chern insulator states at zero\nmagnetic field in twisted bilayer MoTe$_2$ [C23,Z23] and WSe$_2$ [MD23]. In\nthis article, we study the MacDonald Hamiltonian for twisted transition metal\ndichalcogenides (TMDs) and analyze the low-lying spectrum in TMDs in the limit\nof small twisting angles. Unlike in twisted bilayer graphene Hamiltonians, we\nshow that TMDs do not exhibit flat bands. The flatness in TMDs for small\ntwisting angles is due to spatial confinement by a matrix-valued potential. We\nshow that by generalizing semiclassical techniques developed by Simon [Si83]\nand Helffer-Sj\\\"ostrand [HS84] to matrix-valued potentials, there exists a wide\nrange of model parameters such that the low-lying bands are of exponentially\nsmall width in the twisting angle, topologically trivial, and obey a harmonic\noscillator-type spacing with explicit parameters.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted TMDs in the small-angle limit: exponentially flat and trivial bands\",\"authors\":\"Simon Becker, Mengxuan Yang\",\"doi\":\"arxiv-2401.06078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent experiments discovered fractional Chern insulator states at zero\\nmagnetic field in twisted bilayer MoTe$_2$ [C23,Z23] and WSe$_2$ [MD23]. In\\nthis article, we study the MacDonald Hamiltonian for twisted transition metal\\ndichalcogenides (TMDs) and analyze the low-lying spectrum in TMDs in the limit\\nof small twisting angles. Unlike in twisted bilayer graphene Hamiltonians, we\\nshow that TMDs do not exhibit flat bands. The flatness in TMDs for small\\ntwisting angles is due to spatial confinement by a matrix-valued potential. We\\nshow that by generalizing semiclassical techniques developed by Simon [Si83]\\nand Helffer-Sj\\\\\\\"ostrand [HS84] to matrix-valued potentials, there exists a wide\\nrange of model parameters such that the low-lying bands are of exponentially\\nsmall width in the twisting angle, topologically trivial, and obey a harmonic\\noscillator-type spacing with explicit parameters.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.06078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.06078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的实验发现了扭曲双层 MoTe$_2$ [C23,Z23] 和 WSe$_2$ [MD23]在零磁场下的分数切尔诺绝缘体态。在这篇文章中,我们研究了扭曲过渡金属二卤化物(TMDs)的麦克唐纳哈密顿,并分析了 TMDs 在小扭曲角极限下的低电平谱。与扭曲的双层石墨烯哈密顿不同,我们发现 TMDs 并不表现出平坦带。在 TMD 中,小扭转角的平坦性是由于矩阵值电势的空间限制造成的。我们发现,通过将 Simon [Si83] 和 Helffer-Sj\"ostrand [HS84]开发的半经典技术推广到矩阵值电势,存在着更宽的模型参数范围,从而使低洼带在扭转角上的宽度呈指数级小,拓扑上是微不足道的,并服从具有明确参数的谐振子型间距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted TMDs in the small-angle limit: exponentially flat and trivial bands
Recent experiments discovered fractional Chern insulator states at zero magnetic field in twisted bilayer MoTe$_2$ [C23,Z23] and WSe$_2$ [MD23]. In this article, we study the MacDonald Hamiltonian for twisted transition metal dichalcogenides (TMDs) and analyze the low-lying spectrum in TMDs in the limit of small twisting angles. Unlike in twisted bilayer graphene Hamiltonians, we show that TMDs do not exhibit flat bands. The flatness in TMDs for small twisting angles is due to spatial confinement by a matrix-valued potential. We show that by generalizing semiclassical techniques developed by Simon [Si83] and Helffer-Sj\"ostrand [HS84] to matrix-valued potentials, there exists a wide range of model parameters such that the low-lying bands are of exponentially small width in the twisting angle, topologically trivial, and obey a harmonic oscillator-type spacing with explicit parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信