拉多矩阵和威尔逊环图边界的图形微积分

Susama Agarwala, Colleen Delaney, Karen Yeats
{"title":"拉多矩阵和威尔逊环图边界的图形微积分","authors":"Susama Agarwala, Colleen Delaney, Karen Yeats","doi":"arxiv-2401.05592","DOIUrl":null,"url":null,"abstract":"We study the boundaries of the positroid cells which arise from N = 4 super\nYang Mills theory. Our main tool is a new diagrammatic object which generalizes\nthe Wilson loop diagrams used to represent interactions in the theory. We prove\nconditions under which these new generalized Wilson loop diagrams correspond to\npositroids and give an explicit algorithm to calculate the Grassmann necklace\nof said positroids. Then we develop a graphical calculus operating directly on\nnoncrossing generalized Wilson loop diagrams. In this paradigm, applying\ndiagrammatic moves to a generalized Wilson loop diagram results in new diagrams\nthat represent boundaries of its associated positroid, without passing through\ncryptomorphisms. We provide a Python implementation of the graphical calculus\nand use it to show that the boundaries of positroids associated to ordinary\nWilson loop diagram are generated by our diagrammatic moves in certain cases.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rado matroids and a graphical calculus for boundaries of Wilson loop diagrams\",\"authors\":\"Susama Agarwala, Colleen Delaney, Karen Yeats\",\"doi\":\"arxiv-2401.05592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the boundaries of the positroid cells which arise from N = 4 super\\nYang Mills theory. Our main tool is a new diagrammatic object which generalizes\\nthe Wilson loop diagrams used to represent interactions in the theory. We prove\\nconditions under which these new generalized Wilson loop diagrams correspond to\\npositroids and give an explicit algorithm to calculate the Grassmann necklace\\nof said positroids. Then we develop a graphical calculus operating directly on\\nnoncrossing generalized Wilson loop diagrams. In this paradigm, applying\\ndiagrammatic moves to a generalized Wilson loop diagram results in new diagrams\\nthat represent boundaries of its associated positroid, without passing through\\ncryptomorphisms. We provide a Python implementation of the graphical calculus\\nand use it to show that the boundaries of positroids associated to ordinary\\nWilson loop diagram are generated by our diagrammatic moves in certain cases.\",\"PeriodicalId\":501275,\"journal\":{\"name\":\"arXiv - PHYS - Mathematical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mathematical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2401.05592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2401.05592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 N = 4 超杨米尔斯理论产生的正方晶胞的边界。我们的主要工具是一种新的图解对象,它概括了理论中用来表示相互作用的威尔逊环图。我们证明了这些新的广义威尔逊环图对应于正子的条件,并给出了计算上述正子的格拉斯曼项链的明确算法。然后,我们开发了一种直接在非交叉广义威尔逊环图上运行的图形微积分。在这种范式中,对广义威尔逊环图应用图解移动,就能得到代表其相关正体边界的新图,而无需通过密码同态。我们提供了图形微积分的 Python 实现,并用它证明了在某些情况下,与普通威尔逊循环图相关的正方体的边界是由我们的图解移动生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rado matroids and a graphical calculus for boundaries of Wilson loop diagrams
We study the boundaries of the positroid cells which arise from N = 4 super Yang Mills theory. Our main tool is a new diagrammatic object which generalizes the Wilson loop diagrams used to represent interactions in the theory. We prove conditions under which these new generalized Wilson loop diagrams correspond to positroids and give an explicit algorithm to calculate the Grassmann necklace of said positroids. Then we develop a graphical calculus operating directly on noncrossing generalized Wilson loop diagrams. In this paradigm, applying diagrammatic moves to a generalized Wilson loop diagram results in new diagrams that represent boundaries of its associated positroid, without passing through cryptomorphisms. We provide a Python implementation of the graphical calculus and use it to show that the boundaries of positroids associated to ordinary Wilson loop diagram are generated by our diagrammatic moves in certain cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信