Cemil Zalluhoğlu, Doğan Akdoğan, Derya Karakaya, Mehmet Serdar Güzel, M. Mahir Ülgü, Kemal Ardalı, Atila Oğuz Boyalı, Ebru Akçapınar Sezer
{"title":"基于区域的半双流卷积神经网络用于褥疮识别","authors":"Cemil Zalluhoğlu, Doğan Akdoğan, Derya Karakaya, Mehmet Serdar Güzel, M. Mahir Ülgü, Kemal Ardalı, Atila Oğuz Boyalı, Ebru Akçapınar Sezer","doi":"10.1007/s10278-023-00960-4","DOIUrl":null,"url":null,"abstract":"<p>Pressure ulcers are a common, painful, costly, and often preventable complication associated with prolonged immobility in bedridden patients. It is a significant health problem worldwide because it is frequently seen in inpatients and has high treatment costs. For the treatment to be effective and to ensure an international standardization for all patients, it is essential that the diagnosis of pressure ulcers is made in the early stages and correctly. Since invasive methods of obtaining information can be painful for patients, different methods are used to make a correct diagnosis. Image-based diagnosis method is one of them. By using images obtained from patients, it will be possible to obtain successful results by keeping patients away from such painful situations. At this stage, disposable wound rulers are used in clinical practice to measure the length, width, and depth of patients’ wounds. The information obtained is then entered into tools such as the Braden Scale, the Norton Scale, and the Waterlow Scale to provide a formal assessment of risk for pressure ulcers. This paper presents a novel benchmark dataset containing pressure ulcer images and a semi-two-stream approach that uses the original images and the cropped wound areas together for diagnosing the stage of pressure ulcers. Various state-of-the-art convolutional neural network (CNN) architectures are evaluated on this dataset. Our experimental results (test accuracy of 93%, the precision of 93%, the recall of 92%, and the F1-score of 93%) show that the proposed semi-two-stream method improves recognition results compared to the base CNN architectures.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"80 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region-Based Semi-Two-Stream Convolutional Neural Networks for Pressure Ulcer Recognition\",\"authors\":\"Cemil Zalluhoğlu, Doğan Akdoğan, Derya Karakaya, Mehmet Serdar Güzel, M. Mahir Ülgü, Kemal Ardalı, Atila Oğuz Boyalı, Ebru Akçapınar Sezer\",\"doi\":\"10.1007/s10278-023-00960-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pressure ulcers are a common, painful, costly, and often preventable complication associated with prolonged immobility in bedridden patients. It is a significant health problem worldwide because it is frequently seen in inpatients and has high treatment costs. For the treatment to be effective and to ensure an international standardization for all patients, it is essential that the diagnosis of pressure ulcers is made in the early stages and correctly. Since invasive methods of obtaining information can be painful for patients, different methods are used to make a correct diagnosis. Image-based diagnosis method is one of them. By using images obtained from patients, it will be possible to obtain successful results by keeping patients away from such painful situations. At this stage, disposable wound rulers are used in clinical practice to measure the length, width, and depth of patients’ wounds. The information obtained is then entered into tools such as the Braden Scale, the Norton Scale, and the Waterlow Scale to provide a formal assessment of risk for pressure ulcers. This paper presents a novel benchmark dataset containing pressure ulcer images and a semi-two-stream approach that uses the original images and the cropped wound areas together for diagnosing the stage of pressure ulcers. Various state-of-the-art convolutional neural network (CNN) architectures are evaluated on this dataset. Our experimental results (test accuracy of 93%, the precision of 93%, the recall of 92%, and the F1-score of 93%) show that the proposed semi-two-stream method improves recognition results compared to the base CNN architectures.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00960-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00960-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Region-Based Semi-Two-Stream Convolutional Neural Networks for Pressure Ulcer Recognition
Pressure ulcers are a common, painful, costly, and often preventable complication associated with prolonged immobility in bedridden patients. It is a significant health problem worldwide because it is frequently seen in inpatients and has high treatment costs. For the treatment to be effective and to ensure an international standardization for all patients, it is essential that the diagnosis of pressure ulcers is made in the early stages and correctly. Since invasive methods of obtaining information can be painful for patients, different methods are used to make a correct diagnosis. Image-based diagnosis method is one of them. By using images obtained from patients, it will be possible to obtain successful results by keeping patients away from such painful situations. At this stage, disposable wound rulers are used in clinical practice to measure the length, width, and depth of patients’ wounds. The information obtained is then entered into tools such as the Braden Scale, the Norton Scale, and the Waterlow Scale to provide a formal assessment of risk for pressure ulcers. This paper presents a novel benchmark dataset containing pressure ulcer images and a semi-two-stream approach that uses the original images and the cropped wound areas together for diagnosing the stage of pressure ulcers. Various state-of-the-art convolutional neural network (CNN) architectures are evaluated on this dataset. Our experimental results (test accuracy of 93%, the precision of 93%, the recall of 92%, and the F1-score of 93%) show that the proposed semi-two-stream method improves recognition results compared to the base CNN architectures.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.