基于 CT 的放射组学和机器学习用于区分良性、边缘性和早期恶性卵巢肿瘤

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Jia Chen, Lei Liu, Ziying He, Danke Su, Chanzhen Liu
{"title":"基于 CT 的放射组学和机器学习用于区分良性、边缘性和早期恶性卵巢肿瘤","authors":"Jia Chen, Lei Liu, Ziying He, Danke Su, Chanzhen Liu","doi":"10.1007/s10278-023-00903-z","DOIUrl":null,"url":null,"abstract":"<p>To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (<i>n</i> = 198) and a test cohort (<i>n</i> = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon–Mann–Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors\",\"authors\":\"Jia Chen, Lei Liu, Ziying He, Danke Su, Chanzhen Liu\",\"doi\":\"10.1007/s10278-023-00903-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (<i>n</i> = 198) and a test cohort (<i>n</i> = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon–Mann–Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-023-00903-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-023-00903-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

探讨基于CT的放射组学模型在良性卵巢肿瘤(BeOTs)、边缘性卵巢肿瘤(BOTs)和早期恶性卵巢肿瘤(eMOTs)鉴别诊断中的价值。这项回顾性研究的对象是2014年1月至2021年2月期间经病理确诊的258名卵巢肿瘤患者。患者被随机分配到训练队列(198 人)和测试队列(60 人)。通过在图像的最大水平上提供感兴趣体(VOI)的三维(3D)特征,从每位患者的 VOI 中提取了 4238 个放射学特征。采用 Wilcoxon-Mann-Whitney(WMW)检验、最小绝对收缩和选择算子(LASSO)以及支持向量机(SVM)来选择放射学特征。五种机器学习(ML)算法被用于构建三类诊断模型。采用一出交叉验证(LOOCV)来评估放射组学模型的性能。测试队列用于验证放射组学模型的泛化能力。接受者操作特征(ROC)用于评估放射组学模型的诊断性能。通过平均 ROC 曲线下面积(AUC)评估了五个模型的总体和分辨性能。平均 ROC 表明,随机森林(RF)诊断模型在训练队列中表现出最佳的诊断性能(微观/宏观平均 AUC,0.98/0.99),LOOCV(微观/宏观平均 AUC,0.89/0.88)和外部验证(测试队列)(微观/宏观平均 AUC,0.81/0.79)证实了这一点。我们提出的基于CT的放射组学诊断模型可有效帮助术前区分BeOT、BOT和eMOT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors

CT-Based Radiomics and Machine Learning for Differentiating Benign, Borderline, and Early-Stage Malignant Ovarian Tumors

To explore the value of CT-based radiomics model in the differential diagnosis of benign ovarian tumors (BeOTs), borderline ovarian tumors (BOTs), and early malignant ovarian tumors (eMOTs). The retrospective research was conducted with pathologically confirmed 258 ovarian tumor patients from January 2014 to February 2021. The patients were randomly allocated to a training cohort (n = 198) and a test cohort (n = 60). By providing a three-dimensional (3D) characterization of the volume of interest (VOI) at the maximum level of images, 4238 radiomic features were extracted from the VOI per patient. The Wilcoxon–Mann–Whitney (WMW) test, least absolute shrinkage and selection operator (LASSO), and support vector machine (SVM) were employed to select the radiomic features. Five machine learning (ML) algorithms were applied to construct three-class diagnostic models. Leave-one-out cross-validation (LOOCV) was implemented to evaluate the performance of the radiomics models. The test cohort was used to verify the generalization ability of the radiomics models. The receiver-operating characteristic (ROC) was used to evaluate diagnostic performance of radiomics model. Global and discrimination performance of five models was evaluated by average area under the ROC curve (AUC). The average ROC indicated that random forest (RF) diagnostic model in training cohort demonstrated the best diagnostic performance (micro/macro average AUC, 0.98/0.99), which was then confirmed with by LOOCV (micro/macro average AUC, 0.89/0.88) and external validation (test cohort) (micro/macro average AUC, 0.81/0.79). Our proposed CT-based radiomics diagnostic models may effectively assist in preoperatively differentiating BeOTs, BOTs, and eMOTs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信