具有大初始数据和真空的二维可压缩向列液晶流的 Cauchy 问题的全局好拟性

IF 1.3 2区 数学 Q1 MATHEMATICS
Xin Zhong, Xuan Zhou
{"title":"具有大初始数据和真空的二维可压缩向列液晶流的 Cauchy 问题的全局好拟性","authors":"Xin Zhong, Xuan Zhou","doi":"10.1007/s00208-023-02794-5","DOIUrl":null,"url":null,"abstract":"<p>We study compressible nematic liquid crystal flows with the bulk viscosity being a power function of the density (<span>\\(\\lambda =\\rho ^\\beta \\)</span>) on the whole two-dimensional (2D) plane. Under a geometric angle condition for the initial direction field, we show the global existence and uniqueness of strong solutions provided that <span>\\(\\beta &gt;\\frac{4}{3}\\)</span>. It should be noticed that there is no other restrictions on the size of initial data and the initial density allows vacuum states.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"160 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness to the Cauchy problem of 2D compressible nematic liquid crystal flows with large initial data and vacuum\",\"authors\":\"Xin Zhong, Xuan Zhou\",\"doi\":\"10.1007/s00208-023-02794-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study compressible nematic liquid crystal flows with the bulk viscosity being a power function of the density (<span>\\\\(\\\\lambda =\\\\rho ^\\\\beta \\\\)</span>) on the whole two-dimensional (2D) plane. Under a geometric angle condition for the initial direction field, we show the global existence and uniqueness of strong solutions provided that <span>\\\\(\\\\beta &gt;\\\\frac{4}{3}\\\\)</span>. It should be noticed that there is no other restrictions on the size of initial data and the initial density allows vacuum states.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"160 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-023-02794-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-023-02794-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在整个二维(2D)平面上体积粘度是密度(\lambda =\rho ^\beta \)的幂函数的可压缩向列液晶流。在初始方向场的几何角度条件下,我们证明了强(\(\beta >\frac{4}{3}\ )解的全局存在性和唯一性。需要注意的是,初始数据的大小没有其他限制,初始密度允许真空状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global well-posedness to the Cauchy problem of 2D compressible nematic liquid crystal flows with large initial data and vacuum

We study compressible nematic liquid crystal flows with the bulk viscosity being a power function of the density (\(\lambda =\rho ^\beta \)) on the whole two-dimensional (2D) plane. Under a geometric angle condition for the initial direction field, we show the global existence and uniqueness of strong solutions provided that \(\beta >\frac{4}{3}\). It should be noticed that there is no other restrictions on the size of initial data and the initial density allows vacuum states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信