Md Nasir Uddin, N. Shanmugasundaram, S. Praveenkumar, Ling-zhi Li
{"title":"利用机器学习预测工程水泥基复合材料的抗压强度和拉伸应变","authors":"Md Nasir Uddin, N. Shanmugasundaram, S. Praveenkumar, Ling-zhi Li","doi":"10.1007/s10999-023-09695-0","DOIUrl":null,"url":null,"abstract":"<div><p>This research extensively used different progressive machine learning (ML) techniques to predict the compressive strength (CS) and tensile strain (TSt) of engineered cementitious composites (ECC) with 14 input variables and six algorithms. Specifically, random forest (RF), support vector machine, extreme gradient boosting (XGBoost), light gradient boosting machine, categorical gradient boosting (CatBoost), and natural gradient boosting techniques were used in the present study, to understand mechanical properties of ECC meanwhile these properties are crucial for design codes and developing new reliable models for mixtures. The discrepancy between the ML technique and specific ECC expected outputs is novel in this study and will aid researchers in better understanding of ECC features. To estimate the CS and TSt of the ECC, 2535 and 1469 input data points, respectively, were incorporated based on the material ratio, W/B, and different properties of the fibers. In addition, hyperparameter optimization techniques have also been used in ML to improve over fitting and make the model more accurate and robust. Moreover, an error analysis was highlighted between the actual and predicted CS and TSt of the ECC with each ML technique. Also, the significance and influence of the variable inputs that affect the CS and TSt were explained using the Shapley additive explanation (SHAP) approach. Among all approaches, CatBoost and XGBoost predicted the CS and TSt of ECC with greater accuracy than other techniques in terms of the coefficient of determination (R<sup>2</sup>), mean square error, mean absolute error, root mean square error, and symmetric mean absolute percentage error. The training and testing R<sup>2</sup> values of CatBoost and XGBoost for predicting the CS and TSt of ECC were 0.96, 0.89, 0.89, and 0.76, respectively. SHAP analysis revealed that W/B and fiber elongation were the most significant input variables for the CS and TSt of the ECC.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"20 4","pages":"671 - 716"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of compressive strength and tensile strain of engineered cementitious composite using machine learning\",\"authors\":\"Md Nasir Uddin, N. Shanmugasundaram, S. Praveenkumar, Ling-zhi Li\",\"doi\":\"10.1007/s10999-023-09695-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research extensively used different progressive machine learning (ML) techniques to predict the compressive strength (CS) and tensile strain (TSt) of engineered cementitious composites (ECC) with 14 input variables and six algorithms. Specifically, random forest (RF), support vector machine, extreme gradient boosting (XGBoost), light gradient boosting machine, categorical gradient boosting (CatBoost), and natural gradient boosting techniques were used in the present study, to understand mechanical properties of ECC meanwhile these properties are crucial for design codes and developing new reliable models for mixtures. The discrepancy between the ML technique and specific ECC expected outputs is novel in this study and will aid researchers in better understanding of ECC features. To estimate the CS and TSt of the ECC, 2535 and 1469 input data points, respectively, were incorporated based on the material ratio, W/B, and different properties of the fibers. In addition, hyperparameter optimization techniques have also been used in ML to improve over fitting and make the model more accurate and robust. Moreover, an error analysis was highlighted between the actual and predicted CS and TSt of the ECC with each ML technique. Also, the significance and influence of the variable inputs that affect the CS and TSt were explained using the Shapley additive explanation (SHAP) approach. Among all approaches, CatBoost and XGBoost predicted the CS and TSt of ECC with greater accuracy than other techniques in terms of the coefficient of determination (R<sup>2</sup>), mean square error, mean absolute error, root mean square error, and symmetric mean absolute percentage error. The training and testing R<sup>2</sup> values of CatBoost and XGBoost for predicting the CS and TSt of ECC were 0.96, 0.89, 0.89, and 0.76, respectively. SHAP analysis revealed that W/B and fiber elongation were the most significant input variables for the CS and TSt of the ECC.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":593,\"journal\":{\"name\":\"International Journal of Mechanics and Materials in Design\",\"volume\":\"20 4\",\"pages\":\"671 - 716\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Materials in Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10999-023-09695-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09695-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Prediction of compressive strength and tensile strain of engineered cementitious composite using machine learning
This research extensively used different progressive machine learning (ML) techniques to predict the compressive strength (CS) and tensile strain (TSt) of engineered cementitious composites (ECC) with 14 input variables and six algorithms. Specifically, random forest (RF), support vector machine, extreme gradient boosting (XGBoost), light gradient boosting machine, categorical gradient boosting (CatBoost), and natural gradient boosting techniques were used in the present study, to understand mechanical properties of ECC meanwhile these properties are crucial for design codes and developing new reliable models for mixtures. The discrepancy between the ML technique and specific ECC expected outputs is novel in this study and will aid researchers in better understanding of ECC features. To estimate the CS and TSt of the ECC, 2535 and 1469 input data points, respectively, were incorporated based on the material ratio, W/B, and different properties of the fibers. In addition, hyperparameter optimization techniques have also been used in ML to improve over fitting and make the model more accurate and robust. Moreover, an error analysis was highlighted between the actual and predicted CS and TSt of the ECC with each ML technique. Also, the significance and influence of the variable inputs that affect the CS and TSt were explained using the Shapley additive explanation (SHAP) approach. Among all approaches, CatBoost and XGBoost predicted the CS and TSt of ECC with greater accuracy than other techniques in terms of the coefficient of determination (R2), mean square error, mean absolute error, root mean square error, and symmetric mean absolute percentage error. The training and testing R2 values of CatBoost and XGBoost for predicting the CS and TSt of ECC were 0.96, 0.89, 0.89, and 0.76, respectively. SHAP analysis revealed that W/B and fiber elongation were the most significant input variables for the CS and TSt of the ECC.
期刊介绍:
It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design.
Analytical synopsis of contents:
The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design:
Intelligent Design:
Nano-engineering and Nano-science in Design;
Smart Materials and Adaptive Structures in Design;
Mechanism(s) Design;
Design against Failure;
Design for Manufacturing;
Design of Ultralight Structures;
Design for a Clean Environment;
Impact and Crashworthiness;
Microelectronic Packaging Systems.
Advanced Materials in Design:
Newly Engineered Materials;
Smart Materials and Adaptive Structures;
Micromechanical Modelling of Composites;
Damage Characterisation of Advanced/Traditional Materials;
Alternative Use of Traditional Materials in Design;
Functionally Graded Materials;
Failure Analysis: Fatigue and Fracture;
Multiscale Modelling Concepts and Methodology;
Interfaces, interfacial properties and characterisation.
Design Analysis and Optimisation:
Shape and Topology Optimisation;
Structural Optimisation;
Optimisation Algorithms in Design;
Nonlinear Mechanics in Design;
Novel Numerical Tools in Design;
Geometric Modelling and CAD Tools in Design;
FEM, BEM and Hybrid Methods;
Integrated Computer Aided Design;
Computational Failure Analysis;
Coupled Thermo-Electro-Mechanical Designs.