{"title":"奇素数 p 时 $$\\mathbb {Z}_p^*$ 中二次残差与非残差的划分","authors":"Yathirajsharma M.V., Manjunatha M.R.","doi":"10.1007/s00013-023-01942-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>p</i> be an odd prime. In this article, we investigate the number of ways in which a quadratic residue and a non-residue modulo <i>p</i> can be expressed as sum of two quadratic residues sum of two quadratic non-residues, and sum of a quadratic residue and non-residue in an elementary way using Gauss sums.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partition of quadratic residues and non-residues in \\\\(\\\\mathbb {Z}_p^*\\\\) for an odd prime p\",\"authors\":\"Yathirajsharma M.V., Manjunatha M.R.\",\"doi\":\"10.1007/s00013-023-01942-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>p</i> be an odd prime. In this article, we investigate the number of ways in which a quadratic residue and a non-residue modulo <i>p</i> can be expressed as sum of two quadratic residues sum of two quadratic non-residues, and sum of a quadratic residue and non-residue in an elementary way using Gauss sums.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-023-01942-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-023-01942-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设 p 是奇素数。在本文中,我们用高斯求和的基本方法研究了二次残差和非残差 modulo p 可以表示为两个二次残差之和,两个二次非残差之和,以及二次残差和非残差之和的几种方法。
Partition of quadratic residues and non-residues in \(\mathbb {Z}_p^*\) for an odd prime p
Let p be an odd prime. In this article, we investigate the number of ways in which a quadratic residue and a non-residue modulo p can be expressed as sum of two quadratic residues sum of two quadratic non-residues, and sum of a quadratic residue and non-residue in an elementary way using Gauss sums.
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.